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OpenText Application Security Aviator
AI-augmented SAST for faster, smarter secure code review

Fixing security flaws is harder than ever. Development teams today face growing 
codebases, faster release cycles, and limited resources. Traditional static 
analysis tools often overwhelm developers with an avalanche of false positives, 
each requiring extensive triage, research, and remediation. The result: wasted 
time, reduced productivity, and a constant bottleneck that slows innovation. 
OpenText Application Security Aviator uses large language models (LLMs) to 
highlight real issues, explain them clearly, and accelerate secure development. 
Aviator applies AI to enhance static analysis—not to detect LLM-specific threats 
or AI-generated code vulnerabilities, but to improve the clarity and efficiency of 
secure code reviews.

Reduce noise and alert fatigue
Security teams often spend too much time reviewing static analysis results that 
don’t matter. Aviator reduces that burden by automatically classifying issues 
with high accuracy, cutting down on false positives and helping teams focus on 
real vulnerabilities.

With clear, source-aware explanations in the developer’s language, developers 
and analysts see why an issue was flagged and what to do next, saving time on 
follow ups and manual validation.

Speed up remediation with practical guidance
When a real issue is found, Aviator provides clear context and remediation 
help. It explains the problem in plain language and, when possible, offers 
targeted, language-specific code suggestions that fit the issue.

This shortens the time from detection to resolution and supports smoother 
collaboration between security and development teams, whether during early 
testing or right before release.

Benefits
•	Reduce false positives with 
high-accuracy AI triage

•	Describe findings with clear, 
source-aware explanations

•	 Enable tailored remediation 
workflows across dev and 
security teams

•	Boost developer productivity 
while improving trust in SAST
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Built for scale and continuous delivery
Aviator integrates into CI/CD pipelines to support security at scale. By 
verifying issues directly in source code, it improves the accuracy of SAST 
without slowing down the build process. It’s designed for teams handling 
large codebases, multiple repositories, or fast-paced release cycles—helping 
streamline triage and keep your AppSec program focused and efficient.

OpenText Application Security Aviator reduces false positives, saves 
developers time, and improves the clarity and accuracy of secure code 
reviews. It brings consistency and structure to static analysis, helping teams 
keep up with the speed and scale of modern development.

While AI introduces new risks across the SDLC, Aviator is focused on using 
AI internally to improve the precision and usability of static analysis—not to 
detect threats introduced by AI-generated code. Unlike generic AI integrations, 
Aviator is built directly into the OpenText AppSec platform to enhance static 
analysis precision and streamline workflows end to end.

Feature Description

AI-powered static 
analysis auditor

Leverages large language models (LLMs) to 
automatically audit static scan results with high 
precision and minimal false positives.

Context-aware 
remediation 
guidance

Delivers accurate, copy-ready code fixes along with 
rationale, helping developers resolve issues faster.

Human-readable 
explanations

Provides plain-language justifications for audit decisions 
to boost clarity and trust across security teams.

Automated  
triage in CI/CD

Integrates directly into development pipelines, reducing 
manual review cycles before issues reach humans.

False positive 
suppression 
Engine

Identifies and suppresses likely false positives to focus 
teams on actionable vulnerabilities.

Broad language 
coverage

Supports scanning results across 30+ programming 
languages, accommodating diverse enterprise codebases.

AI-driven  
issue tagging

Automatically classifies findings with audit tags to support 
compliance workflows and streamline remediation.

Secure-by-design 
enablement

Complements secure development practices by aligning 
with developer enablement and secure coding tools.

Seamless platform 
integration

Embedded within OpenText Application Security  
Center and orchestrated through ScanCentral for 
unified operations.

Flexible delivery 
models

Available in SaaS and self-managed deployments, 
supporting hybrid and regulated environments.

OpenText Application 
Security Aviator 
deployment options

Accelerate cloud strategies with 
OpenText cloud experts

•	OpenText Managed  
Private Cloud  

Extend your team

•	On-premises software, 
managed by your organization 
or OpenText

Run anywhere and scale globally 
in the OpenText public cloud

•	SaaS: Aviator runs in the 
OpenText Public Cloud, 
delivered as a service

Run anywhere and scale globally 
in the hyperscaler cloud of your 
choice

•	AWS, Azure, GCP, or OpenText 
Private Cloud

Resources

OpenText Application  
Security Aviator 
Learn more ›

Why SAST false positives  
are inevitable
Read the blog › 

Fortify Audit Assistant 
Documentation
Learn more ›

OpenText Cybersecurity
Join the community ›

https://www.opentext.com/products/application-security-aviator
https://community.opentext.com/cybersec/b/cybersecurity-blog/posts/why-sast-false-positives-are-inevitable
https://www.microfocus.com/documentation/fortify-audit-assistant
https://community.opentext.com/cybersec
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