
DATA SHEET

OpenText Application Security Aviator
AI-augmented SAST for faster, smarter secure code review

Fixing security flaws is harder than ever. Development teams today face growing
codebases, faster release cycles, and limited resources. Traditional static
analysis tools often overwhelm developers with an avalanche of false positives,
each requiring extensive triage, research, and remediation. The result: wasted
time, reduced productivity, and a constant bottleneck that slows innovation.
OpenText Application Security Aviator uses large language models (LLMs) to
highlight real issues, explain them clearly, and accelerate secure development.
Aviator applies AI to enhance static analysis—not to detect LLM-specific threats
or AI-generated code vulnerabilities, but to improve the clarity and efficiency of
secure code reviews.

Reduce noise and alert fatigue
Security teams often spend too much time reviewing static analysis results that
don’t matter. Aviator reduces that burden by automatically classifying issues
with high accuracy, cutting down on false positives and helping teams focus on
real vulnerabilities.

With clear, source-aware explanations in the developer’s language, developers
and analysts see why an issue was flagged and what to do next, saving time on
follow ups and manual validation.

Speed up remediation with practical guidance
When a real issue is found, Aviator provides clear context and remediation
help. It explains the problem in plain language and, when possible, offers
targeted, language-specific code suggestions that fit the issue.

This shortens the time from detection to resolution and supports smoother
collaboration between security and development teams, whether during early
testing or right before release.

Benefits
•	Reduce false positives with
high-accuracy AI triage

•	Describe findings with clear,
source-aware explanations

•	 Enable tailored remediation
workflows across dev and
security teams

•	Boost developer productivity
while improving trust in SAST

Copyright © 2025 Open Text • 09.25 | 260-000410-001

Built for scale and continuous delivery
Aviator integrates into CI/CD pipelines to support security at scale. By
verifying issues directly in source code, it improves the accuracy of SAST
without slowing down the build process. It’s designed for teams handling
large codebases, multiple repositories, or fast-paced release cycles—helping
streamline triage and keep your AppSec program focused and efficient.

OpenText Application Security Aviator reduces false positives, saves
developers time, and improves the clarity and accuracy of secure code
reviews. It brings consistency and structure to static analysis, helping teams
keep up with the speed and scale of modern development.

While AI introduces new risks across the SDLC, Aviator is focused on using
AI internally to improve the precision and usability of static analysis—not to
detect threats introduced by AI-generated code. Unlike generic AI integrations,
Aviator is built directly into the OpenText AppSec platform to enhance static
analysis precision and streamline workflows end to end.

Feature Description

AI-powered static
analysis auditor

Leverages large language models (LLMs) to
automatically audit static scan results with high
precision and minimal false positives.

Context-aware
remediation
guidance

Delivers accurate, copy-ready code fixes along with
rationale, helping developers resolve issues faster.

Human-readable
explanations

Provides plain-language justifications for audit decisions
to boost clarity and trust across security teams.

Automated
triage in CI/CD

Integrates directly into development pipelines, reducing
manual review cycles before issues reach humans.

False positive
suppression
Engine

Identifies and suppresses likely false positives to focus
teams on actionable vulnerabilities.

Broad language
coverage

Supports scanning results across 30+ programming
languages, accommodating diverse enterprise codebases.

AI-driven
issue tagging

Automatically classifies findings with audit tags to support
compliance workflows and streamline remediation.

Secure-by-design
enablement

Complements secure development practices by aligning
with developer enablement and secure coding tools.

Seamless platform
integration

Embedded within OpenText Application Security
Center and orchestrated through ScanCentral for
unified operations.

Flexible delivery
models

Available in SaaS and self-managed deployments,
supporting hybrid and regulated environments.

OpenText Application
Security Aviator
deployment options

Accelerate cloud strategies with
OpenText cloud experts

•	OpenText Managed
Private Cloud

Extend your team

•	On-premises software,
managed by your organization
or OpenText

Run anywhere and scale globally
in the OpenText public cloud

•	SaaS: Aviator runs in the
OpenText Public Cloud,
delivered as a service

Run anywhere and scale globally
in the hyperscaler cloud of your
choice

•	AWS, Azure, GCP, or OpenText
Private Cloud

Resources

OpenText Application
Security Aviator
Learn more ›

Why SAST false positives
are inevitable
Read the blog ›

Fortify Audit Assistant
Documentation
Learn more ›

OpenText Cybersecurity
Join the community ›

https://www.opentext.com/products/application-security-aviator
https://community.opentext.com/cybersec/b/cybersecurity-blog/posts/why-sast-false-positives-are-inevitable
https://www.microfocus.com/documentation/fortify-audit-assistant
https://community.opentext.com/cybersec

Accessibility Report

		Filename:

		opentext-application-security-aviator-ds-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
