m opentextw BROCHURE

OpenText Core Application Security Static
Application Security Testing

.

Static application security testing

OpenText™ Core Application Security delivers application security as a service,
providing customers with the security testing, vulnerability management,
expertise, and support needed to easily create, supplement and expand a
Software Security Assurance program. OpenText Core Application Security
supports secure development through continuous feedback to the developer’s
desktop at DevOpsSpeed, and scalable security testing embedded into the
development tool chain.

Protect applications throughout the
software development lifecycle

Organizations are faced with rapidly expanding applications portfolios, both
in size and complexity. Securing applications from risk and vulnerabilities
has become an imperative in order to protect the business and protect
customers. Applications must be protected across all phases of the Software
Development Lifecycle (SDLC) in order for a Software Security Assurance
program to be successful. Application security begins when code is developed.
Code is validated through testing. Application security programs embedded
throughout the Software Development Lifecycle (SDLC) have been proven

to be the most cost-efficient way to ensure policy execution, compliance,
and ongoing enforcement; however, only 13% of technology influencers and
decision makers say all their applications are covered under their current
application security program.’

1. “The State of Application Security in the Enterprise”
2. Fortify Internal Assessments—October 2020
3. “Continuous Delivery of Business Value with Fortify"—June 2017

https://www.microfocus.com/media/analyst-paper/the_state_of_application_security_in_the_enterprise_analyst_paper.pdf

Automated
scans

Up to 25% 2x more
savings in vulnerabilities in false positives in repeat code
development identified reported vulnerabilities
time

OpenText Core Application Security:
Proven in finding and fixing vulnerabilities

OpenText Core Application Security is a complete, proven application security
solution as a service that is scalable to the needs and various application
loads of your business. OpenText Core Application Security can save up

to 25 percent in development time as code scans can be configured to run
automatically. Risks can be identified through OpenText Core Application
Security static scans within minutes?, often revealing 2x more vulnerabilities
in source code than other vendors. OpenText Core Application Security can
also reduce false positives by up to 95 percent which can expedite triaging.
Furthermore, it can help reduce repeat code vulnerabilities by up to 40
percent, resulting in faster development of applications with fewer production
risks.

OpenText Core Application Security static
assessments secure code right from the start

OpenText Core Application Security finds and fixes application security

risks as code is being written. OpenText Core Application Security solution
is fully integrated within the Integrated Developer Environment (IDE). This
means developers receive real-time insights and recommendations on code
vulnerabilities as the code is being written. With OpenText Core Application
Security, developers have the intelligence at their fingertips to build better and
more secure software—right from the start. Our comprehensive static scan
assessments help developers identify and eliminate vulnerabilities in source,
binary, or byte code—all to help your business build more secure software.
Powered by OpenText Static Application Security Testing, OpenText Core
Application Security static assessments detect over 781 unique categories
of vulnerabilities across 27+ programming languages that span over 1 million
individual APlIs.

Static assessment capabilities with OpenText Core Application Security are
amongst the most comprehensive and flexible available worldwide. OpenText
Core Application Security is designed to meet the needs of AppSec leaders for
comprehensive application risk management plus the desire of developers for
speed and ease-of use. Capability highlights include:

e Support for ABAP/BSP, ActionScript, Apex, ASP.NET, C# (.NET), C/C++,
Classic, ASP (with VBScript), COBOL, ColdFusion CFML, HTML, Java
(including Android), JavaScript/ AJAX/Node.js, JSP, Kotlin, MXML (Flex),
Objective C/C++, PHP, PL/SQL, Python, Ruby, Scala, Swift, T-SQL, VB.NET,
VBScript, Visual Basic, and XML

« Developer tools to accelerate AppSec integration across existing agile
or DevOps processes including: IDE plug-ins, code uploads from build or
Continuous Integration (CI) servers, and native integration to bug trackers

« Open source component analysis, powered by Sonatype, to identify publicly
disclosed vulnerabilities and license risks

OpenText Core Application Security Static Application Security Testing 2

OpenText Core Application Security
Step 1: Develop & check-in code — A N
P P e e
Q - W
(@) (o) (@] /> |mw Step 4: Automated audit (Optional) Step 5:
CQQ) . . +, Manual audit
OpenText Static Fortify scan s,
4 Developers (IDE) Application analytics ‘e,
Security Testing ‘e,
I Vulnerabilities
Step 3: Start static | ”o.‘
I assessment | Py
g _ rﬁll : ; ! L. w
I X o | 2% v ! 80% w
Source control Continuous Bill of materials Q
I repository integration server g Known vulnerabilities I Security expert
(-~)mw Licenserisk I ~
I Step 2: Scheduled or triggered .) ~ P
check-out and build Opensource "~ v _
analysis ~ P Vulnerabilities
| N ~ o
—‘ '—' L\
(- mw
l_ (-)mw
— — — | — — — — — — — | o s s)
Defect Step 6: Triage, assign, and fix Vulnerability
management vulnerabilities management

OpenText Core Application Security Static Application Security Testing

Figure 2. OpenText Core Application Security Static Application Security Testing Process

« Comprehensive scanning coverage across source code, byte code or object
code for any type of application: web, mobile or thick-client

Flexible static assessment licensing models with singlescan or subscriptions
available

« Real-time vulnerability identification and reporting with Fortify Security
Assistant (with subscription only)

Actionable results in <1 hour for most applications with DevOps automation

Before the static assessment (Pre-
OpenText Core Application Security)

OpenText Core Application Security subscriptions include Security Assistant
to accelerate DevOps speed and security.

Security Assistant is a plug-in within the integrated development environment
(IDE) that notifies the developer of potential security vulnerabilities as code

is being written. Security Assistant also offers recommendations on how

the developer can remediate identified vulnerabilities. This empowers the
developer to learn how to catch application risks early while saving the
developer time in remediation across later SDLC phases.

When the software is ready to advance in a DevOps or continuous delivery
environment, it is passed through to build or the Cl server. OpenText Core
Application Security static assessments can be initiated quickly and easily.
Developers can upload the application source, binary and/or bytecode from
the IDE, repository, build or Cl server. Developers can also manually upload
code for assessments through the OpenText Core Application Security portal
or automatically using our ecosystem of integrations.

During the static assessment (with
OpenText Core Application Security)

Upon code upload, OpenText Static Application Security Testing immediately
begins scanning the application using an optimized configuration chosen
based on the unique characteristics of each application. The first time an
application is submitted, our team of security experts provides further tuning
to both maximize quality and minimize scan time. With an optimal configuration
established, development teams can move at DevOps speeds knowing that
quality is not being compromised.

Once the OpenText Core Application Security Testing scan completes, the
prioritized results are processed by Scan Analytics. Scan Analytics utilizes
patent-pending machine learning technology to distinguish between the most
relevant vulnerabilities and false positives based on millions of historical audit
decisions by OpenText Core Application Security experts.

Continuously incorporating new intelligence, the predictions turn a large
volume of security information into a small set of high confidence, actionable
results in the span of seconds. Depending on the assessment type, users
choose whether to have these predictions automatically applied and published
or if a further manual audit by a security expert is desired.

Because nearly all applications are built with a combination of custom and
open source code, static assessments also include an optional open source
analysis of the application. Open source analysis happens in parallel to the
OpenText Static Application Security Testing scan and no code leaves the
OpenText Core Application Security environment. Powered by Sonatype’s
software composition analysis, the identified components provide a bill of
materials with known public vulnerabilities and license information.

All results are delivered through the centralized OpenText Core Application
Security platform. Each vulnerability includes all of the information a developer
needs to understand and fix the underlying issue: a detailed description, line
of code, data flow diagram, guidance on how to remediate the vulnerability,
consequences if it's not addressed, and best practices to help developers code
more securely. OpenText Core Application Security makes it easy to integrate
remediation into each team’s workflow, whether that’s managed through
OpenText Core Application Security or our native integrations into the leading
defect management systems. Using full-featured plugins for the major IDE,
development teams can triage, assign issues, track progress and collaborate in
real-time as the code is written.

OpenText Core Application
Security secures DevOps

DevOps is as much about automating repetitive, error-prone tasks to

improve overall development effectiveness, as it is about a new process or
organizational principle. There is the myth that application security adds more
work and time to the SDLC and can be an inhibitor to the DevOps model.
OpenText Core Application Security is purpose-built to make security an
integral part of development, particularly by building and automating secure
code practices within the SDLC.

OpenText Core Application Security is fully integrated into the DevOps
toolchain in order to accelerate automation and integration within the SDLC.
This makes it faster and easier for developers to build security into the SDLC,
whether that’s on a set release cadence, reoccurring schedule or even every
build. As a result, your business is able to move toward automated AppSec
programs, embed security into the SDLC and reduce risk in the production
environment. Currently available DevOps toolchain integrations with OpenText
Core Application Security include:

« Eclipse, Microsoft Visual Studio, IntelliJ developer IDE plug-ins
» GitHub and Atlassian Bitbucket source control repositories

o All major build and Cl systems including Jenkins, Microsoft Visual Studio
Team Services (VSTS)/Team Foundation Server (TFS), Bamboo, TeamCity,
Travis, CircleCl through native plug-ins or our easy-to-use universal
uploaded utiliy

« Application Lifecycle Management with ALM Octane/Quality Center (QC),
Atlassian Jira, Microsoft VSTS/TFS, Bugzilla bug tracking and defect
management systems

OpenText Core Application Security static
assessment scans can take minutes
within a mature DevOps environment

OpenText, a leader and innovator in AppSec, has worked with hundreds of
organizations to accelerate application security as a service within DevOps
environment. Mature security organizations have capitalized on the proven
success of OpenText Core Application Security to automate and integrate
application security as demonstrated through static assessment times.

Approximate OpenText Static Application
Security Testing scan times*

Application size Average OpenText Static Total lines of code (TLOC)
Application Security Testing
scan time

Extra large 12.6 hours >1M TLOC

Large 2.8 hours >400K TLOC

Medium 40 minutes >100K TLOC

Small 9 minutes <100K TLOC

Note: Average OpenText Static Application Security Testing scan time OpenText Core
Application Security static assessments with standard onboarding process for new
applications. Actual scan time for an application will vary based on code structure,
complexity and related factors. Changes to submitted application structure may
require manual intervention to re-tune OpenText Static Application Security Testing
configuration.

OpenText Core Application Security

offers flexible licensing models

OpenText Core Application Security Static Assessments (SA) by OpenText
are available in two licensing models to address specific AppSec objectives.
Customers can mix and match these offerings to each application in their

portfolio based on risk profile, AppSec maturity, development cadence,
compliance requirements, etc.

4. Fortify Internal Assessments—October 2020

OpenText Core Application Security Static Application Security Testing 5

1. OpenText Core Application Security Static Assessment Subscriptions are
ideal in more mature AppSec and DevOps environments that are optimized
for automation, speed and agility. A manual audit of vulnerabilities by our
security experts during the onboarding scan establishes a high quality
baseline with unlimited subsequent automated scans that are ideal for
continuous integration.

2.0penText Core Application Security Static+ Assessment Subscriptions
allow for the choice of manual audits on each scan. Static+ subscriptions
are appropriate when an existing application is expected to undergo
significant changes throughout the subscription term. Another scenario is
when your AppSec program requires flexibility to re-baseline an application
multiple times during the subscription. New or developing application
security programs frequently prefer Static+ assessments so development
teams can ramp up using a measured scanning cadence with the absolute
minimum chance of false positives. Static+ assessments are also designed
for business critical applications for any business, no matter the maturity
of its AppSec program. Business-critical applications can span financial,
compliance or other high priority initiatives.

OpenText Core Application Security also offers licensing models for application
software security without a subscription. Both Static and Static+ assessments
can be purchased with the OpenText Core Application Security Single Scan
option, which is attractive for applications that require two or fewer scans
annually, meeting compliance requirements on legacy applications, or time-
bounded applications (industry event app, marketing promotion app, etc.)

Comparison: OpenText Core Application
Security Static vs. Static + Assessment

Product capabilities Static Static+

Application type Web, mobile, thick-client Web, mobile, thick-client
Files supported Source, binary, byte Source, binary, byte
Open source analysis Yes* Yes*

OpenText Core Application Security Yes Yes

Scan Analytics Yes Yes

Audit methodology (single scan) Automated Automated + Manual

Audit methodology (subscription)

Manual for initial scan then Automated Automated + Manual

Security Assistant
(available by subscription only)

Yes Yes

OpenText Core Application Security Static Application Security Testing

* Added Sonatype subscription needed

Close the loop with secure development testing

OpenText offers comprehensive AppSec training, research and insight—
accessible anytime, anywhere. Our mission is to be your valued partner
and accelerate the success of your Software Security Assurance program.
Resources available include:

« Real-time access within OpenText Core Application Security to Secure Code
Warrior, a leading gamified training platform helping programmers learn and
expand their cybersecurity skills

« Guidance and recommendations, built within OpenText Core Application
Security, on how to remediate code vulnerabilities

« Integration of the latest Software Security Research (SSR) rule packs for
coverage, remediation and insights on the new code vulnerabilities

» Extensive OpenText Core Application Security Training curriculum, focused
on secure code development, embedded within the OpenText Core
Application Security solution.

Let’s get started

OpenText offers the most comprehensive static, dynamic and mobile
application security testing technologies, along with run time application
monitoring and protection, backed by industry-leading security research.

Solutions can be deployed in-house or as a service with OpenText Core
Application Security to build a scalable, nimble Software Security Assurance
program that meets the evolving needs of today’s IT organization.

Learn more.

€3 opentext”

https://www.opentext.com/products/fortify-on-demand

	OpenText Core Application Security Static Application Security Testing
	Static application security testing
	Protect applications throughout the software development lifecycle
	OpenText Core Application Security:
 Proven in finding and fixing vulnerabilities
	OpenText Core Application Security static assessments secure code right from the start
	Before the static assessment (Pre-OpenText Core Application Security)
	During the static assessment (with OpenText Core Application Security)
	OpenText Core Application Security secures DevOps
	OpenText Core Application Security static assessment scans can take minutes within a mature DevOps environment
	Approximate OpenText Static Application Security Testing scan times4
	OpenText Core Application Security offers flexible licensing models
	Comparison: OpenText Core Application Security Static vs. Static + Assessment
	Close the loop with secure development testing
	Let’s get started

Accessibility Report

		Filename:

		opentext-core-application-saas-brochure-en-final.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

