
ADM Market Insight:
Achieving Agile
software quality

2

As software use increases in our personal
and professional lives, enterprises must
deliver quality applications to meet
consumer expectations. However, many
enterprises with large development teams
struggle to ensure high product quality.

Part of this issue is due to a focus on agility. Companies adopt Agile and
DevOps practices to speed up software production and delivery. While
these processes improve both, they don’t necessarily focus on software
quality. But with the right tools and techniques, every part of Agile
lifecycles and DevOps pipelines can contribute to software quality.

In a DevOps environment, IT operations support software development.
It’s challenging to plan and track work across many teams. Limited visibility
into the DevOps toolchain is often the source of these issues. As a result,
you might run into insufficient test planning and limited capabilities to
execute tests.

DevOps pipeline management becomes complex and performing root-
cause analysis becomes time-consuming. Measuring achievements
then becomes challenging, and organizations cannot quantify and
track quality metrics.

When an organization adopts Agile and DevOps practices,
failing to take quality into account actually slows velocity,
creates technical debt, and results in lost productivity.

So, what can
enterprises do to
improve quality?

3

DevOps plays a vital role in the
software development lifecycle, both
for timely releases and for quality.
It makes it easier to place quality at
the core of application delivery and
establish Agile-specific traceability.

Ideally, you should aim to create
complete visibility across each team
in your DevOp’s ecosystem. Visibility
ensures that quality is in every part of
your DevOp’s pipeline. But how can
you achieve high visibility?

Start with good testing and good
tooling. Both manual and automated
testing—whether at the unit,
integration, functional, performance,
or security level—serve as important
checks. They help your team catch
and fix quality issues throughout
the DevOps lifecycle. The lack of
unified tooling, however, makes

maximizing ROI on testing difficult.
Different testing types done at
different points in DevOps pipelines
often use different reporting tools.
With all these differences, managers
struggle to understand the state of a
project’s quality holistically.

That’s starting to change. Tools
like OpenTextTM Software Delivery
Management unify data from a
wide variety of open source and
commercial tools. This unified
approach makes it easier to manage
quality throughout the development
lifecycle and helps teams catch
quality issues quickly.

DevOps is a good start.
But what else can we do
to ensure teams build
quality into every Agile
development process?

Achieve software quality at the pace

4

Create cross-functional alignment

Cross-functional teams must plan
and track related work to produce
high-quality releases. Behavior-driven
development (BDD) can be a key driver
of this process.

BDD uses real business-driven
scenarios and use cases to drive
the development and testing of new
software features. It’s not just a new
facade over old tools and techniques.
BDD uses new tools and processes to
improve collaboration. Development,
quality assurance (QA), and
management pass requirements to one
another, reducing translation costs.

By bringing quality into the development feedback loop
early, BDD accelerates return on your test automation
investment. It shifts testing left in the delivery lifecycle
and provides a flexible framework for defining what
to automate. BDD helps enterprises focus on quality
throughout the DevOps cycle—from Agile planning and
test execution to deployment and production.

By bringing
quality into the
development
feedback loop
early, BDD
accelerates
return on your
test automation
investment.

5

Enable a high-performing team of teams

High-quality applications require complete
visibility across teams and Agile release trains
for release planning and progress tracking.

“Team of teams” is an organization where the
relationships among teams are similar to the
relationships among members of a single
team.

In enterprise software development, the
team-of-teams approach can manifest in
several ways. You might have discrete teams
organized around functions, such as product
management, software development, and
QA. Or you might have cross-functional
teams that each contain a product manager,
software developers, and QA testers. Either
approach to team building can work. And
when you’re building, testing, and deploying
software at enterprise scale, a team-
of-teams alignment is critical. Even the
strongest development teams suffer quality
setbacks as inter-team dependencies are
lost, and timelines suffer.

The team-of-teams approach comes
with a cost, however: coordination
overhead. Fortunately, modern DevOps
tooling solves this issue by streamlining
handoff between teams and providing
management with a bird’s eye view of
new features and fixes.

6

Attain product-level visibility of quality
and velocity

IT and business leaders must maintain a
holistic view of velocity and quality progress.
To maximize quality and velocity, they must
understand quality across all teams, rather
than at the project or team level. Product-
level visibility allows you to measure progress
and quality against critical key performance
indicators (KPIs) by connecting the dots
across parallel work streams.

The necessity for visibility ties back to our
discussion of team of teams. It’s great if
multiple teams work on different parts of
a project—perhaps even in parallel. But
without coordination, a multi-team effort
can quickly devolve into a free-for-all that
makes software quality worse instead of
better. It’s difficult to focus on end-to-end,
DevOps-driven quality without understanding
what work you’re doing across the entire
development pipeline.

High-level tools like OpenText Software
Delivery Management enable Agile release
trains and solution trains to easily measure
product quality by associating features,
defects, and tests with application modules
representing the application’s functional areas.

When looking at solutions in this space,
you should expect dashboards that
enable quality tracking and governance
at an enterprise level. Ensure that any
tool you choose provides metrics like
defect resolution, rates, and aging to
give you actionable data to feed back
into your agile development process.

7

Implement a comprehensive test
strategy

Tests aren’t all created equally. Different scenarios
require different types of tests. Running manual tests
early in the development cycle ensures functionality
meets proposed acceptance criteria. Later, you can
automate tests for future regression and end-to-end
testing.

From manual testing to robust automated test suites
and CI, you should measure software quality against
acceptance criteria at every step. Aim to efficiently
quantify, track, and manage Agile delivery quality
throughout the entire application development lifecycle.

Increase test
automation ROI

Test automation should be a key part of your testing
strategy. While it can’t catch everything, automate as
much testing as you can. Think of it as raising the quality
floor of your application. Every automated test you add
now represents a regression that won’t happen in the
future.

Test automation is at the foundation of any Agile or
DevOps transformation. But, like other development
activities, it’s not free. Automated tests take time and
money to develop. It’s important to get a return on any
time your team invests in automated testing. Aim to
answer questions like:

	+ As automation increases, is cycle time decreasing?
Are we able to ship more quickly?

	+ If automation is slowing us down, does it make
up that time with increased quality?

	+ As automation increases, am I finding defects earlier?
	+ As automation increases, are fewer defects making it

to production?

Yet again, holistic agile tooling helps find answers to
these critical questions. Embedded analytics and context
simplify critical decisions, such as what to automate
and what not to. After all, it’s impossible to determine
whether you’re benefiting from test automation without a
way to get a detailed look at how the quality and velocity
of your software projects have changed over time.

Enabling Agile quality with OpenText
Software Delivery Management

We’ve touched on the need for end-to-end tooling that
drives agile software quality. But this kind of holistic agile
tooling isn’t easy to find. Ideally, you need a solution that
talks to all your existing tools. This approach allows product
managers, software developers, and testers to keep using
the tools they’re already productive with.

Tooling fragmentation is one obstacle to embracing a
true end-to-end approach to enterprise software quality
management. Fortunately, OpenText Software Delivery
Management solves this by integrating existing Agile and
DevOps tooling and providing a sound foundation for a
team-of-teams alignment. OpenText Software Delivery
Management facilitates:

	+ A common release cadence.
	+ Advanced dependency mapping.
	+ Complete visibility into every team’s progress.

OpenText Software Delivery Management’s comprehensive
feature set enables an end-to-end focus on enterprise
software quality and easily scales to thousands of users.
You also benefit from real-time continuous integration and
continuous delivery status, and you can easily view changes
and identify the root cause of failures.

Better yet, OpenText Software Delivery Management
helps accelerate delivery while maintaining governance by
offering support for enterprise agile frameworks like SAFe
4 .0 and DaD. OpenText built OpenText Software Delivery
Management with the understanding that quality should be
everywhere in the software delivery. Its capabilities highlight
that quality is prioritized beyond just testing .

8

Who benefits from OpenText
Software Delivery Management?
A wide variety of enterprise roles benefit:

	+ The research and development (R&D) manager can
prioritize, manage, govern, track, and report on the
lifecycle and quality of business-critical applications.

	+ The QA manager can ensure quality across software
releases and act as a bridge between development
and QA teams—and OpenText Software Delivery
Management helps them handle the tradeoff
between a quick release and comprehensive testing .

	+ Project managers ensure business requirements and
goals are met throughout the development process
with OpenText Software Delivery Management.

	+ The QA engineer uses OpenText Software Delivery
Management while creating detailed, comprehensive,
and well-structured test plans and test cases .

	+ The DevOps team responsible for guiding code
releases from development to release can use
OpenText Software Delivery Management to
streamline and automate workflows.

How to get started
Agile and DevOps can help improve quality, as long as
you use the right tools and make a conscious effort to
focus on quality at each stage of your development
lifecycle. OpenText Software Delivery Management
helps you implement these best practices so that you
can move fast while maintaining quality. Contact us
today to learn about the benefits of using OpenText
Software Delivery Management.

Contact us today

https://www.opentext.com/products/software-delivery-management#gate-27083263-92b8-4848-ac4b-211baca22092
https://www.opentext.com/products/software-delivery-management#gate-27083263-92b8-4848-ac4b-211baca22092
https://www.microfocus.com/en-us/products/alm-octane/free-trial
https://www.opentext.com/products/software-delivery-management#gate-27083263-92b8-4848-ac4b-211baca22092

Copyright © 2025 Open Text • 08.25 | 243-000022-002

	Button 28:
	Button 23:
	Page 2:
	Page 9:

	Button 24:
	Page 2:

	Button 15:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Button 16:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

