
This whitepaper provides an introduction to the
OpenText Process Suite Platform (Process Platform)
architecture and explains how Process Platform
uniquely enables customers to improve their business
operations. It is intended for solution architects
and other technical people who want to obtain a
thorough understanding of the technical aspects of
Process Platform. This paper dives into the technical
capabilities of Process Platform and how these
capabilities are provided.

OpenText™ Process
Suite Platform
Architecture
Learn how the platform enables customers
to improve their business operations

Table of Contents

Architecture Vision and Goals . 3

Process Platform Overview . 4

Design-Time Architecture . 6

Model driven . 6

Integrated metamodel . 6

Team development scenario . 7

Anatomy of a modeler . 8

Standard CWS facilities . 9

Runtime Architecture . 10

Logical view . 10

Deployment view . 11

Node view . 12

Multitenancy . 14

Overview of Runtime Services . 16

User Interface Layer . 16

Business Services Layer . 20

Service Oriented Architecture Layer . 34

Security . 43

Conclusion . 46

About OpenText . 46

Applicable Standards . 47

References . 48

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Architecture Vision and Goals

At OpenText, our mission is to help our customers improve their business operations with
world-class, process oriented software that they can use to change and innovate the way
they do business with greater speed and flexibility.

This mission is translated into the following set of architecture goals:

INTEGRATED PLATFORM Results in simplified installation and maintenance, thus reducing
total cost of ownership.

BROWSER-BASED ACCESS
FOR ALL USERS, INCLUDING
ADMINISTRATORS AND
APPLICATION DESIGNERS

Allows any user, inside or outside the company, to work with Process
Platform with just a browser.

APPLICATION DEVELOPMENT
FOR TECHNICAL AND
NON-TECHNICAL USERS

Bridges the gap between business and IT by enabling non-technical
users to participate in the development process.

INTEGRATED IN
ENTERPRISE INFORMATION
MANAGEMENT (EIM) SUITE

Enables creation of EIM solutions that leverage products like
OpenText™ Content Server, OpenText™ Media Management and
many other products from the OpenText portfolio.

STANDARDS COMPLIANCE Enables easy integration, thus reducing total cost of ownership.

EXTENSIBLE ENVIRONMENT Drives total cost of ownership down.

INTERNET AND
INTRANET DEPLOYABILITY

The same platform can be used for cloud computing and on-premise.

LINEAR SCALABILITY Enables use of commodity hardware, thus keeping total cost of
ownership low.

HIGH AVAILABILITY Provides high availability for business critical systems.

MULTITENANCY Enables cloud computing.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Process Platform Overview

Process Platform delivers the power and flexibility to digitize, automate and integrate
processes across functions, systems, machines and clouds. These processes can be
structured or unstructured giving you ultimate control to optimize your business’ perfor-
mance and expand its reach. Process Platform has been built as a single product. All
features are based on one technology, thus simplifying the experience. The diagram on
this page provides an overview of the platform components.

OpenText is unique in that it has designed a single platform capable of bridging three
different process management worlds: Low-code application development, Case
and Process Management and SOA-based Integration (see the three platform layers
in the previous diagram). Most processes that span a business are at times structured
(process) and at other times more ad hoc (case). Being able to manage processes as they
go from structured to case and back again supports the reality of business. Companies
benefit from the simplicity of a single system to run their businesses with the flexibility
to do so as they need. Additionally, OpenText™ Cloud Service Brokerage is built on top
of Process Platform to provide automated provisioning and metering of applications for
the cloud.

This architecture whitepaper focuses on Process Platform.

A key objective of Process Platform is to simplify the development process with a low-
code development option. Business users can participate in model-driven application
development with an approach that is more intuitive for them. We call this approach
“information-driven design” and it is an alternative way of thinking about the process.
Business users can start with the information they want to manage vs. the process flow.
This a different approach to the traditional process-centric development, where platforms
enable business people to participate by contributing models that programmers take as
input. Process Platform takes a radically different approach – the model is the applica-
tion, not merely an input to a programmer. To enable that, Process Platform application
development is mostly model driven.

Application

PROCESS SUITE PLATFORM

Business Process Management Suite (BPMS)

Service Oriented Architecture (SOA)

Smart Services Grid

C
o

llab
o

rative W
o

rksp
ace C

lo
u

d
 S

er
vi

ce
 B

ro
ke

ra
ge

Enterprise
Service Bus

Business
Services

Master Data
Management

Business Process
Management

Case
Management

Rules
Management

Process
Intelligence

x

User
Interfaces

(Mobile) Task
Management

Entity
Management

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 5

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The Process Platform modeling environment is built as an application on top of the
Process Platform runtime environment. This delivers the following benefits:

•	 Scalable, robust, and secure. All platform runtime features, such as scalability,
high availability, and security directly contribute to the design-time environment.

•	 Testable. No need to install another product to enable testing.

•	 Available everywhere. Every Process Platform installation comes with built-in
design capability.

The full functionality of Process Platform is available through a variety of completely
browser-based user interfaces. Be it system administration, modeling
of applications, or an end user application such as claims handling,
all interactions are browser-based. This makes it possible to
deploy Process Platform, as well as platform-based applica-
tions, in both Internet and intranet scenarios. It also enables
quick and hassle-free involvement of new users. A new
participant in a project needs only a web browser – there is
no need to install anything locally. Process
Platform provides support for the indus-
try's most popular browsers, Chrome™,
Microsoft® Edge, Firefox®, Microsoft®
Internet Explorer and Safari®.

The design-time environment is based
on the platform runtime environment.
This however, does not imply that the
application needs to run in the environ-
ment where it was designed. Standard
development practice is to employ a
DTAP setup (Development, Testing,
Acceptance, and Production1). Differ-
ent environments are used for the different phases of a software development cycle. The
platform has provisions to package and deploy applications to facilitate this approach.

The Internet deployability of Process Platform enables two scenarios:

•	 Cloud computing. In the same way that the OpenText Cloud Service Brokerage
solution is built as an application on top of Process Platform, any cloud application
can leverage the Internet and multitenancy features of Process Platform.

•	 Classic B2B or B2C. Classic business-to-business and business-to-consumer
applications can be built using Process Platform. Such scenarios are usually not
multitenant; the application is hosted on-premise at the owning company, but
exposed to the Internet.

Process Platform provides the following basic features:

•	 High availability. Mission critical applications must always be available. Process
Platform can be deployed on a network of systems, ensuring there is no single point
of failure.

•	 Scalability. Enterprises handle thousands of business processes a day. The
platform is built for this task. It scales vertically (scale up), as well as horizontally (scale
out). Horizontal scalability is accomplished with just commodity hardware.

•	 Multitenancy. Cloud computing scenarios demand multiple organizations, called
tenants, to share the same infrastructure. Multitenancy is a basic feature of Process
Platform that can also be useful in some on-premise scenarios.

•	 Security. With cybercrime being very common, it is crucial to harness the system
appropriately. Process Platform has an advanced set of security measures, including
access control lists, auditing, encryption, and sandboxing.

•	 Service orientation. Service-oriented architecture2 is the predominant design
principle for modern enterprise systems. Service orientation belongs to the very core
of the platform. All interactions are done through services.

http://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production
http://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production
http://en.wikipedia.org/wiki/Service-oriented_architecture

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 6

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Design-Time Architecture

This chapter drills a little deeper into the design-time architecture of Process Platform. It
introduces the model-driven approach and then describes the highlights of the integrated
metamodel, the approach to team development, and the anatomy of a modeler. A closing
section provides an overview of the standard facilities of the Process Platform Collabora-
tive Workspace (CWS).

Model driven

Process Platform takes a model driven approach to application development. A key prin-
ciple is "What you model is what you execute." All modeling activities are done in
the Collaborative Workspace (CWS), a browser-based integrated modeling environment
allowing definition of all kinds of models: business process, user interface, entity, WSDL,
and so forth. Model developers use a browser to create new models or optimize existing
ones. Most models are represented graphically, featuring a responsive, rich user interface.

Integrated metamodel

The models are all based on a single integrated metamodel. This model not only captures
the structure, but also information on the (graphical) visualization, constraints, the building
and packaging procedure, and so forth. A key objective of CWS is to guard consisten-
cy. An application that successfully passed the build step should be deployable. This is
particularly important during refactoring. Renaming a model should not cause an incon-
sistency where the referrer holds on to the old name while the referee has a new one.
Each model has an associated Java class that takes care of the runtime behavior inside
the CWS service. The XML document representing the models is stored in a relational
database through XDS (for more information see Repository).

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 7

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

A simplified view of a part of the metamodel looks like this:

Team development scenario

A business application of reasonable size requires a team of people to model it. Develop-
ment teams will want to use a Software Configuration Management (SCM)3 product to
keep track of revisions of the models and code. To leverage "best of breed" Software
Configuration Management tools, CWS has been designed in such a way that SCM
products can be plugged into it. One plug-in is available out of the box that supports
Subversion4. The SCM interaction is implemented through what is called the file synchro-
nizer. This facility keeps a file system directory and a CWS workspace in sync. The
standard SCM features, such as check-in and check-out, are available to all users as part
of the CWS browser interface.

Some team members might be programmers, using Eclipse™5 or Microsoft® Visual Studio®6.
Such file-based Integrated Development Environments (IDEs) are also supported through
the file synchronizer of CWS.

1 1

BPM ACTIVITY

USER INTERFACE WS OPERATIONSYSTEM ACTHUMAN ACT

Programmer

Modeler

DEVELOPER
STATION

DEVELOPER
STATION

DEVELOPMENT
SERVER

WORKSPACE

WORKSPACE

SVN

RDBMS

File
Share

http://en.wikipedia.org/wiki/Software_configuration_management
http://subversion.apache.org/
http://www.eclipse.org/
http://msdn.microsoft.com/en-us/vstudio/default.aspx

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 8

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Anatomy of a modeler

Process Platform comes out of the box with several modelers for Business Processes,
User Interfaces, Entities, and so forth. This section looks at the anatomy of a modeler and
explains how to build one.

The first step is to define the class definition of the model (that is, the metamodel) along
with its view definition. The view definition defines the user interface for this model. Both
definitions are expressed in XML.

These two definitions form the input to a generator that produces classes such as view
extension, adapter extension, build plug-in, and so forth to use in the front end and back
end of CWS. The modeler developer adds the custom behavior as needed, and then
builds the modeler. The following illustration shows where the various classes are used
when running CWS.

Modeler

BROWSER

View Manager

Object Layer

Business Object
Extension

View
Extension

Adapter
Extension

CWS SERVICE

Run Time

Build Engine

Build
Plug-in

Document
Types

Behavior
Class

Deploy Engine

Package
Plug-in

Publish
Plug-in

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 9

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Standard CWS facilities

The CWS framework provides a set of standard facilities to all modelers:

•	 Where used. Based on the associations between models, as expressed in the
metamodel, CWS automatically provides "where used" overviews. This is an
important tool during impact analysis and refactoring.

•	 User interface. Common look and feel across modelers is facilitated through an
advanced UI framework.

•	 File system synchronization. The content of a CWS workspace can be
synchronized to a file system directory, to enable interaction with SCM tools, and for
use of file-based editors and IDEs. It also helps in easy exchange of workspace content.

•	 Import/export. A plug-in framework supports generic import/export of models.
XPDL import/export ships out of the box. Other import/export plug-ins can be
developed as needed.

•	 Build. The build engine takes care of building all changed documents. The extent of
what is to be built is determined based on the associations between the models. This
prevents unnecessary rebuilding of unchanged models. The actual build behavior is
specifically implemented for each model.

•	 Package. The packaging framework takes the build output of all models of a project
to create the deployable package (CAP).

•	 Publish. For testing purposes, models can be directly published to the development
system. This is taken care of by publishing the framework. This framework also uses
the associations to determine what needs to be published.

•	 Tagging. To enable easy look-up of models, it is possible to attach user defined tags
to them. This is a standard facility of CWS.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 0

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Runtime Architecture

At runtime, Process Platform comprises a set of web service containers connected
through a SOA grid. This section provides a look at the logical view, followed by the
deployment view, an explanation of Process Platform multitenancy and an overview of
the runtime services.

Logical view

A logical view of the Process Platform architecture has a strong resemblance with the
illustration provided in the high-level overview of Process Platform, although there are a
few differences that do justice to the technical aspects.

Each layer is described as follows:

1	 User Interface Layer
The User Interface Layer contains all the User Interface components, such as dash-
boards and the Inbox, but also the application user interfaces developed through
Process Platform. These user interfaces are built on top of the business services as
defined in the next layer.

2	 Business Services Layer
The Business Services Layer hosts services relevant to the business domain; notable
examples being Business Process Management (BPM), Case Management, and
Entity Management. These services are all built on top of the SOA layer.

3	 Service Oriented Architecture Layer
The Service Oriented Architecture Layer provides the fundamental SOA grid function-
ality used by the other layers.

Each component is described in more detail later in this section.

User Interface Layer

PROCESS SUITE PLATFORM

Business Services Layer

Service Oriented Architecture Layer

Smart Services Grid

Business Process
Management

Case
Management

Rules
Management

Business Activity
Monitoring

Entity
Management Scheduling Notification Master Data

Management

Enterprise
Service Bus

EIS
Connectivity

Repository Tagging

Auditing Gateway Tasks Security

x

Dashboards Inbox User Interfaces

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 1

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Deployment view

All runtime components are linked through the Process Platform SOA Grid. The SOA grid
provides three main facilities.

1	 Routing of SOAP messages
The SOA is entirely SOAP-based. The services deliver their XML messages to the
Enterprise Service Bus (ESB). Based on the service registry, stored in an LDAP7 direc-
tory called CARS, it knows the details of all the services. Given the required quality of
service and whether to use a reliable transport, it chooses a channel and delivers the
message to the recipient. The messages can be transferred over a variety of proto-
cols, ranging from plain TCP/IP sockets to message queues.

2	 Load balancing
As the load increases, not everything can be handled on a single system, so multiple
systems might run the same service, thus sharing the load. The ESB has pluggable
load balancing algorithms to decide which service instance to address.

3	 Failover
If one of the service instances fails, load should immediately be moved to other
instances and business should go on as usual. This is taken care of by the failover
features of the ESB.

Details of these features are discussed in Enterprise Service Bus.

The following diagram provides a 'bus view' of Process Platform:

All participants on the bus are equal, so there is no central bus coordinator or single
point of failure. The web gateway is depicted with a different icon because of its special
role, it only acts as a bus client and does not have a role in requests between the peers.
The service icons in the diagram represent a random set of the service groups in a stan-
dard Process Platform system. A service group denotes a conceptual service. The actual
implementation is through a service container. To provide load balancing and fast failover
one service group might be implemented through multiple service containers, most of the
time running on different systems.

DEPICTED SERVICES

•	 Entity Runtime. This component
hosts the entities with their
building blocks. See Entity modeling
and runtime.

•	 Web gateway. This actually is not a
service on the bus but just a client.
It provides an access point for users
and external systems using the
Process Platform web services.

•	 External web services gateway.
This service, often called the UDDI
connector, links external web
services to the bus.

•	 LDAP. Process Platform uses an
LDAP directory, called CARS, as the
runtime repository for certain types
of information. This repository is
accessed through the LDAP service.

•	 CRM connector. The Customer
Relationship Management
(CRM) connector is an example
of a connector to any Enterprise
Information System (EIS) or legacy
system. Using Process Platform,
connectors can be developed for
the various enterprise information
systems in an organization. This
connector bridges the proprietary
protocol of the EIS with the bus.

External Web Services
Gateway

Entity
Runtime BPM

CWS LDAP CRM Connector

SSO

CARS CRM

WEB GATEWAY

EXTERNAL SYSTEM

EXTERNAL SYSTEM

http://nl.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 2

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The previous illustration gave an abstract representation of the relationship between
services. The following illustration provides a concrete view of the interaction between
two services in an example deployment configuration of the BPM engine and a CRM
connector. The BPM engine is deployed as a single service container on one system,
whereas the CRM connector is deployed as two service containers, each running on its
own system.

The BPM engine directly connects to one of the two CRM connectors to submit its request.

Node view

The following illustration shows schematic view of a typical Process Platform node:

CRM

BPM 1

CRM Con 2CRM Con 1

Process Platform
Enterprise Service Bus

CWS
Service

ContainerBPM Service Container

Application
Service

Container

WEB SERVER

Web Gateway

Process Experience

Entity Runtime

BACKEND
SYSTEMS

Other
Systems

Process Platform
Monitor

XML Store
Service Container

LDAP
Service Container CARS

PROCESS PLATFORM MACHINE

USERS

Apache TomEETM

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 3

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The web application server (currently only Apache® TomEE8 is supported) acts as a front
end for the Process Platform node and it hosts a number of components:

•	 Web applications. A number of Process Platform components is implemented as
Java EE web applications. The most notable example is Entity Runtime.

•	 Service containers. Traditionally, all service containers were hosted in processes
managed by the so-called Monitor. More recent versions of Process Platform allow
running service containers in the web application server, thus enabling a transaction
scope that spans multiple web applications and service containers. The most notable
example is the Case/BPM engine, which works in close cooperation with Entity
Runtime, to support the Lifecycle building block.

•	 Web Gateway. All requests from browsers and external systems enter Process
Platform through the web gateway.

Service containers are managed by the Process Platform Monitor. This is a Linux® daemon
or Windows® service responsible for the lifecycle of the service containers, both inside
and outside the web application server. For service containers, it is indifferent whether
they run inside the web application server or outside it. Both types of processes provide
an identical execution environment, as visualized in the following picture:

It is the administrator's choice to assign service container to operating system processes.
Deciding factors include:

•	 Memory consumption. Colocating service containers reduces the memory
footprint, but putting everything in a single process will make the footprint of that
process large.

•	 Fault isolation. If for some reason a process crashes, it will take all service
containers in it down.

•	 Transaction scope. Service containers within an OS process can invoke each other
as part of a single transaction.

•	 Efficiency. Web service requests within an OS process are more efficient.

WEB APPLICATION SERVER MONITOR

OS PROCESS 1 OS PROCESS 2
Entity Runtime

Single Sign-on
Service Container

Service ContainerWeb Gateway

Business Process Management
Service Container

QUERY PROCESS
INSTANCE

DATA
APPLICATION
CONNECTOR

BUSINESS
PROCESS

MANAGEMENT
APPLICATION
CONNECTOR

------ APPLICATION
CONNECTOR

Service Container

------ APPLICATION
CONNECTOR

------ APPLICATION
CONNECTOR

SSO
 APPLICATION
CONNECTOR

http://tomee.apache.org/

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 4

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Multitenancy

The Process Platform SOA Grid represents the physical or deployment aspect of the
Process Platform architecture. The organization notion represents a logical concept in the
Process Platform architecture. All functionality is invoked in the context of a user and the
organization of that user. The organization is not really located on a particular node. All
service containers, wherever located, can execute the functionality on behalf of a user in
the context of that organization. So, if a user starts a user interface it will be in the context
of an organization of which the user is a member. And if the user interface invokes a call
on a service container, it will execute in the context of that organization and user. Before it
is executed, the role of user is validated against the Access Control List of the service. If
the user does not have the required authorization, the logic will not be executed. A single
user can exist in multiple organizations and have different roles in each organization.

Service containers exist in the context of an organization. The functionality in a service
container is exposed via a SOAP or REST interface. When a SOAP call is initiated, it is
always done in the context of an organization. For efficiency and reuse, a common shared
organization called System acts as a fall back mechanism for other organizations. If the
service is not implemented in the current organization, the call is delegated to the service
container in the System organization and executed there, but still in the context of the
invoking user and organization.

All Process Platform service containers are organization aware and use multitenant data
stores to persist their data. When an Independent Software Vendor (ISV) builds a new
application, two options are available to deal with multitenancy in the datastore:

•	 Support multitenancy as part of the database schema, as depicted previously. The
service container of the application can be deployed into the System organization to
allow all organizations to use this new application.

•	 Provision a separate database (schema) for each tenant. Entity Runtime and
WS-AppServer support per tenant database configuration, enabling segregation of
tenant data in separate database schemas. This is depicted in the following diagram.

The content of the application (for example, the business processes and user interfaces)
can be deployed for a single organization (or tenant), thus making it available within the
context of only that organization. This is called organization level deployment. It typically
happens when developing or customizing an application for just one organization.

KEY
FIELD

XYZ1

XYZ2

110

267

79234934

78234934

TENANT
ID

DATA DATA TIME
STAMP

APPLICATION
SERVICE

CONTAINER

APPLICATION
SERVICE GROUP

Call in context of
organization & user

SOA GRID

ORGANIZATION 110

ORGANIZATION 267

SYSTEM

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 5

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Alternatively, an application can be deployed for all organizations. In that case, the applica-
tion content is stored in the so-called Shared space. This space contains content common
to all organizations. This is depicted in the following illustration. Although the Shared space
is drawn in the same fashion as an organization, it is, technically speaking, not an organi-
zation. Content (for example, user interfaces and business processes) is always stored in
the context of an organization, or the Shared space. Wherever a service container loads
its content from, the context is always based on the organization of the user on whose
behalf the logic is executed.

The following illustration provides an example where a business process of an applica-
tion is customized for one organization. The user of "organization 110" will be using the
business process defined in the Shared space, though it will be executed in the context
of "organization 110." A user in the "organization 267" will use a customized version of this
business process, stored in its own organization.

APPLICATION
SERVICE

CONTAINER

APPLICATION
SERVICE GROUP

Call in context of
organization & user

Database2 for
organization 267

Database1 for
organization 110

SOA GRID

ORGANIZATION 110

ORGANIZATION 267

SYSTEM

SHARED SPACE

BPM ENGINE

BPM customized
in Organization

BPM Engine
executes BPM in
the context of
organization &
user

BPM defined
in shared space

ORGANIZATION 110

ORGANIZATION 267

SYSTEM

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 6

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Overview of Runtime Services

This section provides further details on each of the components depicted in the Logical view.

User Interface Layer

The User Interface Layer contains all User Interface components, such as dashboards
and the Inbox, but also the application user interfaces developed through Process Plat-
form. These user interfaces are built on top of entities and business services as defined
in the next layer.

User Interfaces

The Process Platform supports User Interfaces of different kinds and technologies. This
section describes the User Start Page, the User Interface Modeler, and the Process
Experience technology.

USER START PAGE

The User Start Page is a generic and task-driven view of the product functionality present-
ed to the user. This view shows a non-hierarchical navigational model with role-based
set of tasks.

The key elements of the User Start Page are:

•	 A Most Used Tasks list that consists of the tasks and shortcuts available to a
particular user based on the roles and permissions assigned and the usage pattern of
the user.

•	 This will be shown only as a list. Initially all the tasks will be listed.

•	 The most frequently used tasks will move up the list with progressive usage.

•	 The most frequently used tasks come with default categories, and are able to be 'Live
Categorized' by the user.

•	 Typical examples of a task would be user management, create a user interface, create a
business process, and so forth.

•	 A Most Recently Used list that summarizes the last and latest used artifacts in the
system.

•	 This list will be specific to a user.

•	 The initial view will become empty and the list of most recently used tasks will appear only as
system artifacts are used.

•	 The system artifacts listed here come with their default categories, and are able to be 'Live
Categorized' by the user.

•	 Typical artifacts can be files, forms, business process models, and so forth.

•	 An Organization Switcher enables users with accounts in different organizations to
switch to another organization.

PROCESS EXPERIENCE

Process Experience structures user interfaces through layouts with different types of
panels showing different information. For example, a layout can contain panels to show
forms, lists, web content, and so forth. List panels can list entities of different origin,
including entities from various business process management and content management
systems. Through this, it is possible to design good looking and informative user inter-
faces that enable users to access disparate systems and applications using a consistent
user interface.

Layouts

The user interface consists of layouts that organize a set of panels into a page to be
presented to a user. There are two types of layouts: entity and home page. Entity layouts
are used to display instances of a specific entity and may contain panels that display
various aspects of the current entity. Home page layouts are launched with no entity and
can only include panels that do not require an entity.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 7

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

A layout can contain any number of panels arranged as specified at design time. If multi-
ple panels are combined in a single zone in a layout, the layout manager presents tabs for
a user to select a panel to activate.

Layouts subdivide screen real estate to present information. However, the amount of
screen real estate available varies greatly, as the same layout can be accessed from
various displays ranging from a desktop with a huge monitor to a mobile device with a
small screen. While a modeling user could design separate layouts for different sized
screens, this is tedious and difficult to maintain. To simplify this, the layout manager uses
responsive design techniques to automatically rearrange the panels in a layout based on
the available screen real estate. The layout is designed for the largest sized screen and
the layout manager rearranges panels automatically for smaller screens.

Lists

The most common way for a user to interact with the system is by running a list. The func-
tion of a list is to filter and present a set of entities (see Entity modeling and runtime). Two
classes of entities are supported: native entities, defined through Entity Modeling, and
external entities, imported through an Enterprise Information System (EIS) connector. An
EIS connector makes data from an EIS available in the form of entities. The growing set of
EIS connectors includes connectors to OpenText legacy BPM products, thus enabling a
unified user experience across multiple BPM systems.

Forms

Typically, when you choose to present entities to a user, you present each entity's proper-
ties in a form. The form can present any property from the entity and its related entities.
This includes any property from any of its building blocks, not just the custom properties
that you define. For example, if an object includes a Title building block that provides a
Title property, that property can be added to a form.

A form consists of a set of form components. The types of form components follow:

•	 Properties. A property component presents one of the object's properties. Each
type of property has a set of alternative presentations called formatters that can be
used to display the property's value.

•	 Containers. Containers are used to add structure to a form. Examples of containers
include the tab, stack, and general containers.

•	 Decorations. Decorations can be used to make the form more usable or attractive.
Examples of decorations include text, image, and horizontal rules.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 8

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

USER INTERFACE MODELER

Besides the entity-based Process Experience User Interface (UI) technology, Process
Platform also includes a UI modeler to build user interfaces on top of web services.
With this modeler, developers can quickly create applications that use the full power of
Process Platform, link directly to services running on the Process Platform SOA grid, and
provide full transactional capability. The UI modeler features a WYSIWYG (What You See
Is What You Get) approach and rich UI controls to streamline and simplify the process of
converting ESB functionality into rich, intuitive, process-centric applications that run in a
browser environment.

The forms are based on the XForms9 standard, as defined by W3C. XForms is an XML
format for the specification of a data processing model for XML data and user interface(s)
for the XML data, such as web forms. Process Platform provides a rich set of UI controls,
including basic elements such as check boxes and radio buttons, but also advanced
controls such as AppPalette and Google maps™. The environment is extensible through
the notion of composite controls. This technology allows building UI controls of any
complexity and delivering them as reusable UI controls.

The forms are stored in the XMLstore and delivered through the XForms Service Contain-
er. One of the key responsibilities of this service container is to translate the form in
the language applicable for the current user. Depending on the language, the form is
rendered right-to-left10, as required for languages such as Arabic and Hebrew, or left-to-
right, as required for English and French.

Dashboards

Building a dashboard is as simple as building any user interface. Every Key Performance
Indicator (KPI) or business measure defined in Business Activity Monitoring comes with a
composite control, which provides a chart representation of the business indicator. These
charts are placed on a user interface to build a rich and interactive dashboard.

https://www.w3.org/MarkUp/Forms/
http://en.wikipedia.org/wiki/Right-to-left

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 1 9

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Inbox

The most common user interface for Process Platform users is the Inbox. The Process
Platform provides an advanced one, which is fast and highly configurable to suit every-
body's needs.

Case Management integration:

•	 The Inbox has a seamless integration with the Case Management solution

•	 Overview of all the tasks to which the user has access, grouped by case model and
case instance

•	 Case Task view providing a consolidated view of the active tasks for a particular case
instance

•	 Complete Case dashboard enabling the user to

•	 Plan follow-up activities

•	 Raise events

•	 Attach documents

•	 Perform administrative activities (for example, suspend, resume, forward, delegate)

•	 Case history view

Customization possibilities in Inbox:

•	 Visual customization (personal and on role/team/work list level)

•	 Behavioral customization

•	 User preference for language and date format

•	 User-selectable business data

•	 Extensible for application developers through custom JavaScript code supporting
events, such as onBeforeCommit and onBeforeFollowup

The Inbox interacts with the notification service on the back end to fetch work items and
update statuses.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 0

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Business Services Layer

The Business Services Layer hosts services relevant to the business domain; notable
examples being Business Process Management (BPM), Case Management, and Entity
Management. These services are all built on top of the SOA layer.

Business Process Management

In Process Platform, the BPM engine is one of the most important components. Process-
es are defined as BPMN11 compliant graphical models in CWS. The build step on such a
model results in an XML definition that is interpreted by the BPM engine at runtime.

Some key characteristics of the BPM engine follow.

•	 Supports short-lived and long-lived processes. Short-lived processes do
not involve user interaction and do not log progress information. This makes short-
lived processes ideal to express fragments of logic. Long-lived processes log
their progress in the Process Instance Manager (PIM) tables and can involve user
interaction.

•	 Fast and scalable. If sufficiently powerful hardware is available, a single BPM
engine can execute thousands of short-lived business processes per second. If a
single system cannot handle the load, the BPM engine can be scaled out to multiple
systems.

•	 Part of Business Process Management service group. In a default Process
Platform deployment, the BPM engine is part of the Business Process Management
service group, together with Case Management. To optimize performance, this
service group can run the following services in an embedded mode:

•	 Rule Engine

•	 WS-AppServer

•	 CoBOC

•	 Data transformation

•	 Process Instance Manager. Execution of long-lived processes is tracked in the
PIM tables. The PIM user interface provides access to this data.

•	 Multitenant. Like any Process Platform service, the process engine is multitenant
enabled, so multiple tenants can have their own process definitions and collections of
running processes.

•	 WS-AppServer Integration. High speed transactional processing can be
accomplished by embedding WS-AppServer in the BPM service container. This
allows short-lived processes to directly call WS-AppServer classes in a transactional
manner.

•	 Crash recovery. The BPM engine restarts a crashed process from the last recovery
point as captured in the PIM.

•	 Reliable messaging. When using a reliable message transport, the BPM engine
coordinates the transactions on the PIM tables and the message oriented middleware
to ensure a web service operation is executed once, including the handling of the
service response.

•	 Standard SCXML execution format. The process models are complied to
SCXML12, a W3C standard.

Following is a screenshot of a real world BPMN flow in Process Platform that handles a
long-living insurance claim across different departments and external parties. It is depict-
ed as a yellow swim lane at the bottom representing the Inspector who reviews the inci-
dent on-site, per request of the insurance company.

This flow shows clearly that Process Platform orchestrates human tasks (via user inter-
faces) and system tasks (such as web services updating the claim status during the
claim handling) in one process model.

http://www.bpmn.org/
http://www.w3.org/TR/scxml/

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 1

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The earlier mentioned Rule Engine and Data transformation are all invoked from this
BPMN flow, not necessarily visible for the business end user, but visible for the functional
administrator or process analyst.

Case Management

BPMN is suitable for processes that are well defined and uniform. In day-to-day life,
however, processes often vary on a case-by-case basis and the knowledge worker
in the process wants to decide on the necessary next steps. This is the "sweet spot" for
Case Management. At the core, a case process is a state machine. Modeling users can
decide to express their case model as a set of interrelated states, but they can also opt
for a simplified model with just one implicit state. The activities of a case model are related
to each other through "follow-up relations." The build step of a case model produces
SCXML that at runtime is interpreted by the state machine of Case Management. Cordys
(now OpenText) is one of the submitters of the Case Management Model and Notation
(CMMN) standard.

Some key characteristics of the Case engine follow.

•	 Fully state machine-based. A case model is converted into a state model,
including aspects such as follow-up relations, which might not seem state-related at
first glance.

•	 Standard SCXML execution format. The state definition complies with the
SCXML12 standard as defined by W3C.

•	 Case data management. Case models define the data structure applicable for
that case.

•	 Case Instance Manager. The progress of a particular case, as well as any changes
to the case data, are tracked in the case instance tables. The Case Instance Manager
provides access to this data.

•	 Part of Business Process Management service group. In a default Process
Platform deployment, the case engine is part of the Business Process Management
service group, together with the BPM engine.

http://www.w3.org/TR/scxml/

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 2

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Following is a screenshot of the case model invoked from the main BPMN flow shown
previously. It demonstrates how the BPMN flows and case models can invoke each other.
This case model has four functional states and the arrows depict the state transitions that
are often event-based.

If you compare the main BPMN flow given on the last page with the one given above, you
can see that Process Platform has the option to collapse and expand groups of activities.
The embedded sub-process labeled Handle claim as an Exceptional Case is expanded
by the process designer into detail activities of which the last one, labeled Handle Excep-
tional Case invokes the case model.

The way this invocation works can even be configured via the properties boxes (using
Tabs) allowing process designers to tune runtime behavior exactly to their needs.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 3

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Case and BPM processes share a single runtime engine, for which the architecture is
depicted above:

Rules Management

Process Platform offers a powerful, high performing rule engine for expressing business
logic in the form of rules. Business logic (such as calculation of discount, calculation of
customer rating, and so forth) is well suited for expressing in business rules, as such logic
is subject to frequent changes. It should be easy for business users to modify and deploy
business rules. Part of the logic of business processes is often expressed as business
rules to make the business process less complex, more flexible and easier to maintain.
The following picture depicts the rule engine architecture.

•	 The rule engine is well integrated with WS-AppServer. Applications should decide
which logic should be part of Java code and which logic should be expressed as
rules. The rule of thumb is that any logic that is very dynamic and changes frequently
should be expressed as rules.

•	 Decision tables in Process Platform
are layered over the concept of
rules. They abstract a user from
the procedure of building a rule
from scratch. A decision table can
be created based on a business
object. Each decision table can
contain one or more rules acting
on that business object. Decision
tables provide a concise, easy-
to-read, highly maintainable,
and logically organized way of
representing and querying data.

DESIGN TIME

MODELING
Collaborative

Workspace (CWS)

Studio

RUN TIME

BPM/Case
Designer

Design-time
Repository

XDS

Save

BPML/
SCXML

EXECUTION
Business Process

Engine

PROCESS
EXECUTOR

Load
 Process

ModelB
P

M
L/

SC
X

M
L

B
P

M
N

/
C

M
M

N

ARCHIVING
Archiving

Engine

MONITORING &
ADMINISTRATION

Process/Case
Instance Manager

(PIM/CIM)

PIM/CIM
User Interface

Archiving
Policy

Management

Archiving
ExecutorC

Q
L

SQ
L

Business
Process
Model

(run-time)
Repository

Thread Pool &
Job Queue

BPML Interpreter

SCXML Processor

Scheduler

Thread Pool &
Job Queue

Process
Monitoring

Data

Archiving
Audit
Data

CQL
Processor

P
ro

ce
ss

A
d

m
in

is
tr

at
io

n

Publish/
Package

& Deploy

P
u

b
lis

h

M
o

n
it

o
ri

n
g

D
at

a

RULE ENGINE

Database

Management
Library

XPath
Engine

Cache
Framework

CACHE

NATIVE
ENGINE
(CRML

Interpreter)
REPOSITORY

MANAGER

ACTION
HANDLER

Invoke
Process

Invoke
Web Service

Custom
Handler

Assignment

LDAP

XQY

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 4

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

•	 Decision tables can be used directly as an activity in a BPM process.

•	 Alternatively, you can generate a web service on top of a decision table, enabling it
from all web services consumers.

•	 The Process Platform rule engine is available as a Java library, allowing any
application to use it as an in-process Java library.

The following screenshot shows the decision table invoked from the main BPMN flow for
the insurance claims handling example. The decision table is invoked as a web service
from the BPMN flow, demonstrating the end-to-end web services based architecture of
Process Platform.

The blue BPMN activity labeled Process Exceptional Claim Rules is in fact the invocation
of the decision table, executing at runtime its Conditions and Actions (if-then-action rules).

Business Activity Monitoring

Business Activity Monitoring (BAM) helps to monitor key business events for changes
or trends indicating opportunities or problems on which business managers can take
(corrective) action.

BAM provides real-time alerts and notifications of critical events and a centralized perfor-
mance dashboard. It offers a drill-down analysis to discover trends, patterns, and bottlenecks.

In addition to monitoring business processes, BAM can also be used to monitor data
coming from other systems using Master Data Management (MDM) or web services and
present it to users via alerts or the dashboard.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 5

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The above picture depicts the BAM architecture

The picture below depicts different aspects of the BAM runtime architecture.

Some explanation about the depicted components:

•	 The data for both EDO and processes is collected through MDM. The process data
is picked up by identifying process events based on process state transitions in
the database.

•	 The business measure web services are executed by fetching and executing
corresponding SQL query from the BAM metadatabase.

•	 KPIs are monitored by the monitoring agent (scheduler) by invoking KPI web service
with parameters specified in the KPI editor during design time.

•	 The BAM dashboard charts are built through the XForms designer, using
FusionCharts graphical controls.

An alternative to BAM is OpenText™
Process Intelligence, one of the consti
tuents of OpenText™ Process Suite.
Process Intelligence allows gathering
process data in a data warehouse.
This data can then be used to produce
reports through OpenText™ Informa-
tion Hub, which is fully integrated in
OpenText Release 16, or other report-
ing tools, to gain insight in processes
and cases, and to create dashboards
for continuous monitoring.

DASHBOARD

Inbox, Email, BPM, WS Business Measure ServicesKPI Services

Business Events Monitoring Object

External Tools

KPI Graph Monitoring Object View Process View Inbox View

NON-PROCESS DATA SOURCESPROCESS DATA

EDOWeb Services

Monitoring Object is
created implicity for

Business Event

EDO

MDM

Dashboard External Tools

BAM
Database

Process
Data

Enterprise
Apps

ANALYSIS TOOLS CORRECTIVE &
PREVENTIVE

ACTION (CAPA)

Process
Engine

Application
Web Services

Scheduler Rule
Engine

KPI Monitoring Agent

BM Execution Engine

Admin Services KPI Engine

Monitoring Object Engine Event Processing Engine

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 6

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Entity management

Though Process Platform is strongly service oriented, with SOAP and WSDL as the
common language between the different components, there is also a notion of enti-
ties. When building a user interface form, the user interface modeler recognizes certain
patterns in the interface contract and based on that, knows that a certain entity (for
example, an order) is dropped on the form. Process Platform supports entity manage-
ment in two ways:

•	 Low-code, through entity modeling and runtime

•	 Developer-oriented, through WS-AppServer

Both variants are described in subsequent sections.

ENTITY MODELING AND RUNTIME

The entity model concept brings a more pervasive and complete notion of Entity to
Process Platform, enabling an information first approach to application design and devel-
opment. An Entity represents an identifiable notion in the business domain. Entity model-
ing takes a compositional approach - entities are constructed by adding building blocks
until the desired result is achieved. The building blocks available include:

•	 Properties - various property types (such as Date, Integer, Text) are supported. An
Order entity, for instance, typically has properties such as deliveryDate (Date) and
orderAmount (Integer).

•	 Relationships - entities can have child entities and maintain peer-to-peer
relationships with other entities, supporting cardinality 1:1 and 1:n. An Order entity
for instance would have zero or more OrderLine child entities and a n:1 relationship
with Customer.

•	 Rules - business logic is added to an entity using declarative rules. Rules can be
used to do validation, calculate values, control form behavior, and to start processes.

•	 Actions - custom actions can be added to an entity. The action can calculate and
set the value of properties and start processes.. An Order entity for instance would
have an action plan.

•	 More - there are many more building blocks available including File, Content List,
Discussion, Security, Lifecycle, Mobile App, List, and Layout. An Order entity for
instance would have a Security building block to manage the authorization on the
entity, and a number of lists and layouts to represent the orders to the user. A Claim
entity would have a Lifecycle building block to manage the states of the claim, a
Discussion building block for threaded discussions, and a Content List to manage
the documents.

The entity modeler provides the option to expose SOAP web services on entities to read
and manipulate them (by adding the Web Services building block). This enables exposing
web services to external web service consumers (for example a .NET application) and
using entities from models that currently only support SOAP web services. The SOAP
request is routed to the Entity Runtime through the Application Server connector.

In the following sections, we zoom in on important building blocks and aspects of Entity
modeling and runtime:

•	 Entity Runtime

•	 Lifecycle building block

•	 File and content list building block

•	 Mobile app building block

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 7

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

ENTITY RUNTIME

The Entity Runtime is running as a web application inside the web application server, next
to Process Experience, which provides the user interface functionality related to entities.
As depicted in the following diagram, Entity Runtime exposes a set of RESTfull interfaces
to its clients and it stores its data and metadata in a relational database. In multitenant
scenarios, the relational database can be tenant specific or shared among tenants (while
still maintaining strict data isolation). The most common scenario is to define the entities
through the Entity Modeler and have the Entity Runtime create the database schema. In
scenarios where the database schema already exists, it is possible to import it and create
entities based on the existing database schema.

LIFECYCLE BUILDING BLOCK

Entity modeling is a very powerful tool to define case-centric applications. Adding the
Lifecycle building block to an entity brings all the power of the Case engine into the Entity
world. It is now possible to define the states and actions of the case in the Lifecycle build-
ing block and have the data of the case (both structured data in the form of properties and
related entities, and unstructured data in the form of documents) defined and managed as
an entity. Dedicated UI panels enable showing task lists (based on the Task and Notifica-
tion service) combined with document lists and dashboards in a uniform user experience.

WEB SERVER

Web Gateway

Process Experience

Entity Runtime

DEPLOY

PUBLISH

HTTP

REST

Apache TomEETM

USERS

CWS

CAP

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 8

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

FILE AND CONTENT LIST BUILDING BLOCK

Integrating entities with documents is common. If an entity needs just a single file, the File
building block takes care of it. If multiple files are required, it can be done with the Content
list building block. The latter one will internally add a child entity with, among others, a File
building block on it. The panel showing the content list is featured in the previous screen
shot, bottom left. The file building block uses the Document store to abstract from differ-
ent types of content repositories and to provide a single point of configuration.

MOBILE APP BUILDING BLOCK

Creating a mobile microapp through entity modeling is a matter of modeling the desired
entity layout to show the entity, the list to show a collection of entities, and the mobile app
building block. That suffices to create a mobile application that can be deployed through
OpenText™ AppWorks.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 2 9

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

WS-AppServer

For a coding developer, WS-AppServer provides a way to define the application and UI
logic in a simple and structured manner. WS-AppServer pulls out database metadata
from a relational database and generates Java code. The generated code, along with the
WS-AppServer framework, provides the application with the following features:

•	 Persistence is completely taken care of by the framework and there is no need to
write code to perform CRUD13 operations.

•	 Object Lifecycle and Transaction management is handled by the framework.

•	 Event-based programming makes coding easier.

•	 WS-AppServer has a large number of object lifecycle and transaction related events
that are raised by the framework. Based on its specific needs, the application just
needs to fill in what it needs to do when a certain event is raised.

•	 Dynamic business logic is supported via an integration with the rule engine.

•	 Logic that is unlikely to change frequently is put inside the Java code.

•	 Logic that changes frequently is defined as business rules, thus ensuring that business users
can change the application behavior without having to bring in their developers to change
the code.

•	 Application logic can be easily exposed through web services.

•	 Table specific classes can be aggregated into user defined classes, called custom
classes, which map closely to the view the end user needs to see.

•	 Business logic of non-Process Platform systems can be extended by defining classes
over entities of external systems and using the WS-AppServer events to handle the
persistence and define the business logic.

Scheduling

In a real-time business environment, the ability to trigger processes or applications based
on specific system events or at a specific time is a critical requirement. Process Platform
facilitates modeling of schedules that can trigger time-based actions, such as processes
or web service invocations. Process Platform provides an intuitive UI-based schedule
modeler, enabling modeling of different kinds of schedules that can be integrated into
an application.

Schedules are generally of two kinds:

One-time schedule. These are executed only once

TYPE OF SCHEDULE DESCRIPTION
RUN NOW Once created, this schedule is instantly executed

DURATION This schedule can be set to execute after a specified duration

Repeating schedule. These are triggered at specified periodic intervals, ranging from
annually to hourly

TYPE OF SCHEDULE DESCRIPTION
HOURLY Recur at a specified time every hour

DAILY Recur at a specified time every day

WEEKLY Recur at a specified time every week

MONTHLY Recur at a specified day every month

FIRST DAY OF MONTH Recur at a specified time on the first day of every month

LAST DAY OF MONTH Recur at a specified time on the last day of every month

FIRST WEEKDAY OF MONTH Recur at a specified time on the first weekday of every month

LAST WEEKDAY OF MONTH Recur at a specified time on the last weekday of every month

FORTNIGHTLY Recur at a specified time every 15th day

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 0

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

At the scheduled interval, one of the following actions can be triggered:

•	 Invoke a web service by providing appropriate parameters.

•	 Instantiate a new business process by providing the process model name and the
input message.

•	 Call back an already running business process instance by providing the instance ID.

Task and Notification service

Every Process Platform user is assigned an Inbox that is used to send and receive tasks
and notifications. The Inbox is configured for a given user profile and functions like a
mailbox. Process Platform users can access tasks that are sent to their work lists, to their
associated roles, to the teams they are part of, and to their personal task lists.

Tasks

A task is an activity in a process that is to be executed by a human participant of the
process. Users can either respond to the task, add a new action to the flow after the task,
or do both. For example, when the stock of a particular item in a warehouse reaches a
certain level, a replenish task is sent to the warehouse manager. On receiving the task,
the warehouse manager opens it, fills in a purchase order form and forwards it to the
purchase manager.

Notifications

Notifications are used to convey event information to designated recipients or roles. For
example, a notification can be used to send a message to the Exceptional Claims Team
that there is a claim to be handled as an exceptional case.

The following screenshot shows how the work assignment can be configured via the
Process Platform properties tabbed dialog boxes.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 1

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The above screenshot shows the Process Platform User Interface used for one of the
tasks drawn from the previously explained insurance claims BPMN process model. The
user interface is shown in preview mode when clicking the user interface icon part of the
Process Activity Validate Claim in the grey swim lane. This exemplifies the model-driven
approach of the Process Platform: models for flows, cases, task user interfaces, and
so forth.

A service container called Notification Service manages the lifecycle of both tasks and
notifications. The following illustration shows the architecture of the Notification Service.

DATABASE

Process
Engine

Organization
Management

Notification Service

Task Querying Service

Task Assignment Service

Team Management

Task Call Back Handler

Life Cycle Management

Task Security Service

Task Utility Service

Case
Engine

Notification Engine

INBOX

Tag
Server

Task
Server

LDAP
(Identity

Management)

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 2

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

COMPONENT RESPONSIBILITY
INBOX Facilitates knowledge workers to effectively and efficiently work with

their tasks.

NOTIFICATION ENGINE Responsible for task management. Interacts with the ecosystem and
presents the details to Inbox. It is the core component of workflow.

PROCESS/CASE ENGINE Interacts with the notification component to deliver the tasks for the
human activities. Upon completion of the task, it takes the BPM or
case to the next step.

ORGANIZATION MANAGEMENT Responsible for team management.

IDENTITY MANAGEMENT The user information and the roles are stored in LDAP. The notifica-
tion engine interacts with LDAP to retrieve the user/role information.

TASK SERVER Every UI in Process Platform is represented as a task. Inbox inter-
acts with the task server to retrieve the URL of the user interface
associated with a human task.

TAG SERVER The Inbox interacts with the tag server to retrieve tasks associated
with user defined tags.

DATABASE CONNECTIVITY
AND PERSISTENCE STORE

All tasks and associated models are stored in a database. The
notification engine uses the XQY database connectivity layer for
persistence and retrieval of the task list content.

•	 Work list. A work list is a container of the tasks processed in a workflow, case, or
any other composite application and is displayed in the Process Platform Inbox.
Teams are associated with a work list. Users who are part of the teams assigned
to work list can view all the tasks assigned to their work list, the status of various
tasks in their work list, and so on. Depending upon the skill set and requirements,
users can claim tasks from the work list. Once the task is claimed, it appears in the
personal tasks folder of the user, which contains all the tasks assigned to or claimed
by the user.

•	 Escalation support. For tasks created from processes or cases that are not
completed in the stipulated time, as defined at design time (either statically or
dynamically through a variable), an escalation message is sent to the manager of the
case worker or to the manager of the work list to which the task is delivered. It is also
possible to transfer the task to some other user on escalation

•	 Open. It is not mandatory to have XForms as the user interface. It is also possible to
reuse the existing UI pages, developed in ASP.NET or JSP, as a UI task in Process
Platform for workflow integration and task delivery. It is possible to create an external
user interface document and link the existing user interface developed in ASP.NET or
in JSP by providing an interface contract in the form of XML schema. The JSP or ASP.
NET pages need to be enhanced to consume the data from Process Platform and
provide the data back to Process Platform, according to the XML schema provided.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 3

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Master Data Management

Master Data Management (MDM) focuses on the core infrastructural needs of enterprise
data integration. Process Platform separates infrastructural MDM needs from all that
is domain-specific. This implies a data domain-agnostic approach to data integration.
Users can apply MDM for integrating data of different data types: master, reference, and
transactional data. In addition, within a given data type (for example, master data), MDM
can be applied to harmonize data of different subject areas, such as Customers, Suppli-
ers, Products, Locations, and so forth.

Highlights of the Process Platform MDM offering:

•	 Pluggable architecture (employing third party data quality tools, and so forth)

•	 Near real-time data synchronization

•	 Master data, business object lifecycle management

•	 Event driven object lifecycle management

•	 Strong workflow capabilities

•	 Works in publish - subscribe model

•	 Support for web services

•	 Supports all three MDM patterns (Registry, Coexistence and Transactional)

There are various ways in which organizations can use MDM to build and deploy trusted
data hubs, according to the needs and goals of the enterprise. Following is a summary of
what MDM can provide for the enterprise:

•	 Identify sources of master data

•	 Identify producers and consumers of master data

•	 Collect and analyze metadata of master data

•	 Appoint data stewards

•	 Implement a data governance program

•	 Develop a master data model

•	 Design and set up the infrastructure

•	 Generate and test the master data

•	 Modifying producing and consuming systems to integrate with the new MDM solution

•	 Implement maintenance process

Architecture of the MDM runtime

Rules

Bucket Tracker

Sniffer

F
O

LB

PTR (Publish to Runtime)

Transform

PUBLISHER

BUS

Spoke Updater

Request Manager N
o

tificatio
n

s &
 Lo

gs

Modeling & Monitoring

State Engine

Deployment Uploader

MDM SERVICE

CoBOC LDAP OLE DB JDBC CUSTOM

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 4

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Service Oriented Architecture Layer

The Service Oriented Architecture Layer provides the fundamental SOA grid functionality
used by the other layers.

OpenText XML technology

From its inception, Process Platform uses XML as the core communication protocol
format. The information exchange across the Process Platform components is in the
form of XML, which leads to heavy XML processing. This necessitated the development
of better implementations14 of XML processing technologies, such as an XML parser and
an XPath/XSLT processor.

The Process Platform XML parsing API has two flavors. The first flavor, NOM (Native
Object Model), is a set of proprietary APIs, which is highly efficient but a bit complex in
use. The second variant, coined DOM-over-NOM15, is a standard DOM API layered
over the NOM APIs, bringing the benefits of a convenient standards compliant API while
keeping the overhead extremely low. Developers can choose their favorite API flavor and
even switch from one to the other16.

Enterprise Service Bus

Process Platform provides an integrated suite of services to enable customers to develop,
deploy, and manage business applications on a Service Oriented Architecture (SOA).
Therefore, Process Platform has a broad view of middleware that forms the platform on
which the other components are built and offered as services. These are then consumed
and orchestrated by our customers in a process-driven approach for building their custom
applications, web applications, and composite applications.

The center of this middleware is the enterprise-ready ESB, which is the enabler for SOA.
This unique technology enables every service as a loosely coupled, distributed service on
a bus, with the associated benefits of granular failover and scalability.

Traditional ESB implementations have emerged from Message Oriented Middleware
(MOM) by adding web services and Enterprise Application Integration (EAI) on top
of this existing MOM infrastructure. In a hub-and-spoke architecture, all back-end systems
(spokes) rely on the hub to communicate with each other and any hub failure causes the
entire integrated system to fail. In addition, any back-end systems can potentially overload
the hub, making it necessary to augment the hub with additional computing power. The
Process Platform ESB does not have a central hub, which eliminates the single point of
failure and removes a common performance bottleneck. The Process Platform ESB uses
bus as an architecture and peer-to-peer as the communication paradigm.

The enterprise service bus has emerged as the best practice to perform application
connectivity and to decouple service consumers and service providers, and is the most
tangible software infrastructure for SOA.

The following sections focus on some of these services, which are expected to be deliv-
ered by any modern day ESB, and how the Process Platform ESB provides them.

LDAPDB ERP CRM XDS UDDIGOOGLE APPS J2EE/.NET CUSTOM APPS

PROCESS PLATFORM ESB

CONNECTIVITY FRAMWORK

Transport Management
(JMX)

Alert &
Logging

Transaction
Management

SSOClustering &
High Availability

Security &
Authorization

https://wiki.cordys.com/display/PI/2009/06/17/The+how+and+why+of+the+Cordys+XML+engine
https://wiki.cordys.com/display/PI/2009/05/22/Bringing+NOM+to+the+Java+Developer
https://wiki.cordys.com/display/PI/Using+DOM+APIs+Over+Cordys+NOM

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 5

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

STANDARDS COMPLIANCE

Process Platform uses universally accepted standards, such as WSDL, XSD, XML
and SOAP. All consumers of the Process Platform web services can use the "design by
contract" model for invoking these web services without having to worry about underly-
ing implementations. Process Platform is also WS-I Basic Profile17 compliant, so the
services hosted on Process Platform are completely compatible with different platforms.
Developers can base their functionality on the contract given by the WSDL and not worry
about implementations.

LOOSE COUPLING

All capabilities provided by Process Platform or built by customers using the platform are
delivered to the end user as services, and from a technology perspective as web servic-
es. Web services use WSDL and XSD and provide loose coupling because they formal-
ize the contract between the consumer and provider. The Process Platform messages
follow the paradigm of stateful objects and stateless connections, so all invocations for
the Process Platform services are completely decoupled and do not hold any information
about the client's prior interactions.

TRANSPORT TRANSPARENCY AND MULTIPROTOCOL SUPPORT

A critical capability of the ESB is to route service requests through a variety of commu-
nication protocols and to transform service requests from one protocol to the other
where necessary. Enterprise applications typically involve talking to different individual
applications that support different transport protocols, and the Process Platform ESB
provides physical transport protocol bridging to allow communication between services
using different transports. Process Platform provides a choice of configuring services on
sockets, Microsoft Message Queuing (MSMQ), Java Message Service (JMS), and also
offers the option to build custom transports. This gives flexibility to effectively integrate
disparate systems and manage complex communications at the transport level.

LOCATION TRANSPARENCY

The ESB acts as a layer of middleware through which a set of business services is made
widely available, but the client is not aware of where the service is hosted, as it breaks the
previously mentioned loose coupling strategy. All Process Platform services point to one
physical address and the Process Platform ESB locates the service when it is invoked,
providing a level of service virtualization and location transparency, so that if a node goes
down or a service provider has to be moved, individual service clients do not need to be
notified of the change.

CLUSTERING - LOAD BALANCING AND HIGH AVAILABILITY

The ESB acts as the middleware to host all services. It is also suited to perform load
balancing of service requests across services. The Process Platform services are config-
ured under a logical entity called service group. Each service is hosted in a service
container, which is the Java process providing the implementation. A service group can
be implemented through more than one service container of the same configuration,
each running on a different physical node. An administrator can choose the load balanc-
ing algorithm, such as simple failover or round robin for load balancing. Service contain-
ers can be added or removed on demand depending on the need. The Process Platform
clustering leverages a reliable broadcasting technology called Gossip. Service containers
broadcast their state and health information using the Gossip protocol18.

SECURITY INFRASTRUCTURE

As the ESB acts as the central mediator for service invocations, it is ideal for declaring
and enforcing security. The Process Platform ESB provides a comprehensive security
infrastructure for developers to create access control lists for specific roles/users on all
important components, such as service groups, web services, and metadata, which are
then enforced by the engine after authentication. Process Platform can integrate with any
enterprise domain authentication systems or integrate with external SAML providers, and
also provides the option of custom authentication.

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://en.wikipedia.org/wiki/Gossip_protocol

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 6

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

RELIABLE MESSAGING

Reliable messaging refers to the ability to queue service request messages and ensure
guaranteed delivery of these messages to their destinations. It includes the ability to
provide message delivery notification to the message sender/service requester. The ESB
supports distributed transactions and the Process Platform components are configured
for accepting requests on message queues. They can deliver and receive messages
reliably, even in case of component, system, or network failures. The Process Platform
reliable messaging uses distributed transactions through the XA19 protocol and supports
JMS and MSMQ message queues.

MANAGEABILITY

It is important to monitor the health of the ESB and the services hosted on it. The ESB
comes bundled with applications that provide comprehensive information about all the
services, health of the system in a dashboard view, and the ability to drill down to specif-
ics for any component. Process Platform has self-healing capabilities, where services
raise alerts and can take corrective actions automatically. Process Platform services can
be monitored using any JMX and SNMP compatible tools.

Manageability using JMX

Process Platform can be managed through the JMX APIs as exposed by the platform. JMX-
capable tools can directly interact through JMX. Other tools can use an SNMP adapter.

TRANSACTION
SCOPE

U
p

d
at

e

U
p

d
at

e

SERVICE
CONTAINER

BPM
ACTIVITY

MICRO
FLOW

OUTBOUND
QUEUE

INBOUND
QUEUE

DATABASE DATABASE

SNMP ADAPTER

JMX (JAVA MANAGEMENT EXTENSIONS)

PROCESS PLATFORM

UnicenterVisualVM

http://en.wikipedia.org/wiki/X/Open_XA

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 7

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

COMPOSITE APPLICATION LOGGING

The Process Platform ESB supports diagnostic logging, known as Composite Application
Logging (CAL) for composite applications. The composite application log messages have
contextual information, such as correlation ID and multilevel diagnostic contexts, which
indicate the execution path of the application. The context is non-intrusively propagated
across several layers based on the execution. This enables administrators to perform
causality analysis of any incident. The log messages are optionally stored in a centralized
database, thus providing an integrated view of the logs of a cluster of multiple nodes. The
composite application log viewer provides drill down, correlative analysis, and filtering.

Implementation aspects of the Process Platform ESB

RUNTIME NOTION

Web services are served and processed by service containers. A service container is a
Java virtual machine, typically running as a physical process on the system.

Service containers are logically grouped as service groups. Service groups hold the
necessary configuration information to identify the type of request and the routing.
Requests are received through connection points configured on the service contain-
ers. Service containers can be configured on multiple nodes and each service container
has multiple connection points, potentially with different transport protocols. Connection
points are end points for services on the ESB.

Service groups provide the loose coupling aspects in terms of location transparency.
Connection points enable the network protocol neutral message delivery. Service
groups, service containers and connection points are configured in the Process Platform
LDAP repository.

MESSAGE ROUTING AND DELIVERY PARADIGMS

All the requests (web service invocations) are identified through the namespace. The
namespace indicates the type of request that needs to be processed.

•	 Based on the request, the respective service group is first identified using the
Process Platform LDAP repository.

•	 Then, based on the availability and routing policy, a specific service container is
chosen for processing the request.

•	 After selecting the service container, the connection point information is used for
choosing the transport protocol.

•	 Request is delivered to the service container for processing.

The Process Platform ESB supports both synchronous (request-reply) and asynchronous
(fire-and-forget, request-callback) messaging paradigms.

ENTERPRISE SERVICE BUS

SERVICE GROUP A

Service
Container

Service
Container

SERVICE GROUP B

Service
Container

Service
Container

SERVICE GROUP D

Service
Container

Service
Container

Service
Container

SERVICE GROUP E

Service
Container

Service
Container

SERVICE GROUP C

Service
Container

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 8

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

THE PROCESS PLATFORM MONITOR

The Process Platform Monitor is a special service container on the ESB. It acts a supervi-
sor for all service containers configured on that particular node. Each node in the ESB
cluster has its own monitor configured and running. It runs as a Linux daemon or Windows
service and takes care of:

•	 Managing (start, stop, restart, reset) service containers (inside and outside the web
application server, see Node view).

•	 Providing the necessary bootstrap configuration.

•	 Synchronization and broadcasting of status information of all service containers on
the cluster.

•	 Synchronization and broadcasting of any problems faced by any service on
that node.

A service container can be on one of three states:

•	 Stopped. The service container is not loaded in memory.

•	 Paused. The service container is passive. If it receives a request, it will handle
it, but it will not take initiatives itself. The Scheduler for example will handle a
CreateSchedule request as normal, but when time passes by, it will not fire the
scheduled action.

•	 Started. The service container operates normally.

An entire cluster can be paused and resumed through the System Resource Manager.
Pausing a cluster is useful during upgrades but also for certain replicated setups. When
starting or stopping a service container, the container always transitions through the
Paused state.

GOSSIP PROCESS PLATFORM CLUSTERING TECHNOLOGY

Process Platform is a distributed system20 that uses multiple processes (Java virtual
machines) spread across nodes. The Process Platform ESB uses routing and load-
balancing techniques to distribute user requests to appropriate processors (called service
containers). These activities require group communication to be included in the ESB, for
which the Gossip protocol18 is chosen.

The message propagation21 in Gossip is depicted in the following illustration, where nodes
selectively broadcast to a set of peers22 and where duplicates are ignored.

Service
Container

Monitor

Source

Intermediate

Node

Process Platform
Cluster

1
1

1

1

2

3

3
3

3
3

4

3

2

4

4

2
2

2

Original Message
Propagation

Duplicate Message
Propagation

https://wiki.cordys.com/display/PI/2009/12/22/Guidelines+for+building+distributed+applications+and+frameworks
http://en.wikipedia.org/wiki/Gossip_protocol
https://wiki.cordys.com/display/PI/2010/02/11/SSU+Framework+highlights+-+1
https://wiki.cordys.com/display/PI/2010/03/19/SSU+-+Framework+highlights+-+2

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 3 9

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Some of the use cases for this framework are:

1	 Distributed cache invalidation. Most of the components (for example, LDAP, Rule,
CoBOC) in Process Platform use caching for performance reasons. All these compo-
nents use Gossip for cache invalidation. More information is available in this article23.

2	 State registry. State registry is an in-memory database of the state of the Process
Platform cluster, built on Gossip. The Process Platform state registry provides the
needed infrastructure for high availability. More information is available in this article24.

APPLICATION PACKAGING AND DEPLOYMENT

Process Platform provides both web-based and command line-based facilities for manag-
ing the applications built using Process Platform.

Any composite application developed using Process Platform is packaged through a
format called CAP. Packaging the application is part of the standard CWS facilities.

A major part of the platform is packaged as CAPs and deployed through the CAP deploy-
er. The CAP format is well defined to manage dependencies, prerequisites, and cluster-
level deployments for installation, upgrade, and uninstallation. CAP contains a manifest of
all artifacts that are bundled. The manifest maintains the type information, identification,
and a hash for each artifact.

•	 The type information is used to identify the needed deployment logic.

•	 The identification is twofold: a human-readable name, often the name of the CWS
model, and a synthetic identifier that remains the same when the artifact is renamed.

•	 The hash helps to identify the change in the artifact across different versions of
the application.

Using the manifest, CAP deployment provides the fine grained detail and impact caused
by the application deployment. For example: The impact analysis section displays the list
of artifacts affected and whether they are deployed at cluster level or node specific.

A package can be deployed in the shared space, available to all organizations, or to a
specific subset of the organizations. Organization level deployment allows having differ-
ent packages and package versions for different organizations. When building a package,
it is possible to indicate whether the package can be deployed in the shared space, on
organization level, or both.

Process Platform maintains an XDS-based repository called CAP Registry to register
the details of all the applications deployed.

CAP provides a single step to install, upgrade, uninstall, and roll back any application
across the cluster.

Optionally, CAPs can be digitally signed to build the chain of trust. The trusted entities
are registered through the Security Admin Console. It is configurable to allow/disallow
unsigned and tampered applications. This option establishes the trust factor for multiten-
ant deployment over the cloud.

Enterprise information system connectivity

Every enterprise uses one or more business applications and IT systems to manage the
business of the enterprise. Solutions developed with Process Platform nearly always inte-
grate with existing Enterprise Information Systems (EIS). These applications and systems
include ERP systems, Content Management systems, CRM systems, databases, and so
forth. Process Platform provides a generic connectivity framework to connect to various
systems and applications. Based on this framework, Process Platform and the commu-
nity around Process Platform have developed a set of ready-made connectors for some
of the most commonly used IT systems.

https://wiki.cordys.com/display/PI/2009/11/10/Distributed+cache+invalidation
https://wiki.cordys.com/display/PI/2009/12/01/State+registry+in+Cordys

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 0

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The Process Platform connectors act as an interface between the ESB layer and a specif-
ic application, system or technology. It provides a two-way communication channel. That
is, requests or messages from the ESB layer are converted to a format that is under-
standable by the specific application or system and messages from the application are
converted to SOAP requests on the ESB.

The application connector framework leverages the rich functionalities and features
provided by Process Platform, which include:

•	 Logging

•	 JMX support

•	 Access control list (ACL)

•	 Problem Registry

•	 Localization support

•	 Transaction support

•	 Load balancing and failover support

The generic connectivity framework helps ISVs and application developers to develop
specific connectors with minimum effort, and also enables third party connectors and
adapters to be integrated with Process Platform.

The ready-made connectors provided by Process Platform and the community around it
provide instant access to most widely used systems in an enterprise. Some of the out-of-
the-box connectivity options provided by Process Platform are:

•	 Email connector. The email connector enables sending and receiving mails through
IMAP or SMTP and POP3.

•	 FTP connector. The FTP connector enables uploading and downloading files to/
from an FTP server.

•	 HTTP connector. The HTTP connector is commonly used to interact with RESTful
web services. It supports both JSON and XML.

•	 JMS connector. The JMS connector enables integration with JMS-based services.
It exposes web services to send and receive messages, and it allows defining a
trigger to invoke a web service upon receipt of a message over a JMS queue. The
latter feature is commonly used to execute a process upon receipt of a message.

•	 SAP® connector. The SAP connector provides connectivity to SAP back ends
through RFC and BAPI.

•	 Script connector. The Script connector enables web services to be implemented
in JavaScript.

A full catalog of the available connectors is available here25.

Repository

Process Platform consolidates storage of metadata in a single repository called XDS.
This repository is the underlying store for the Process Platform Collaborative Workspace
(CWS) but also stores tag definitions, tasks, business calendars, and so forth. XDS is
RDBMS-based and meets the high availability requirements of Process Platform.

The Process Platform repository contains different kinds of data:

•	 Application content developed in CWS. Stored in XDS via CWS.

•	 Data published from CWS. Certain deployed models are stored in XDS (example
business calendar, organization models, tasks, and so forth.)

•	 Runtime data. The platform and applications built on top of it can store metadata
and definitions in the repository (for example, XMLStore, which uses XDS to store the
content in the database).

•	 Platform metadata. Stored in repositories. Package installation details, for example,
are stored in XDS.

https://wiki.cordys.com/display/dsc/Connector+Directory

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 1

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

The above diagram shows the architecture layer of the repository service.

Document Store

Documents are usually stored in a content repository. Process Platform provides Docu-
ment Store as the facility to work with any content repository. Any document, regardless of
the content, can be stored in these document stores. Documents can be added as attach-
ments and be retrieved later. Documents can also be viewed, uploaded or downloaded.

Document Store enables you to plug in a content repository so that any existing content
repository can be used. Process Platform can work with any content repository server
that has exposed its repository API according to JSR 17026 or CMIS27 specification.
Some repositories, such as Apache Jackrabbit™28, provide a true implementation of
JSR 170. Other repository servers exposing their repository service through a JSR 170
compliant wrapper can also be plugged into Process Platform.

The document store supports the following content repository types:

•	 Repository (based on XDS, not supported for production usage)

•	 Apache Jackrabbit

•	 OpenText Content Server

•	 OpenText™ Archive Center

•	 CMIS (any type of CMIS 1.1 compliant content repository)

•	 Custom plug-in implementation

To optimize memory consumption, a streaming-capable RESTful API exists. An integra-
tion with OpenText™ Brava!™ DWG Viewer enables viewing any type of document in
the browser.

Tagging

Many social networking sites allow their users to tag29 information. Tags are generally
chosen informally and personally by the item's creator or by its viewer, depending on the
system. Tagging is an easy way for end users to group or categorize their own tasks and
artifacts. Tagging abstracts the storage approach (for example, hierarchical) and enables
users to view the system in a more linear and self-managed approach.

The tagging service within Process Platform allows associating tags to any type of artifact.
Process Platform currently uses it to associate tags to tasks on the User Start Page, tasks
in the Inbox, and documents in the Process Platform Collaborative Workspace (CWS).
The design is extensible and allows tagging application artifacts (for example, orders,
products, employees) as well.

XDS XDS XDS XDS
XML
Store

REPOSITORY SERVICE

DATABASE

Tag
Server

Task
Server

Document
Store

http://jcp.org/en/jsr/detail?id=170
http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html
http://jackrabbit.apache.org/
http://en.wikipedia.org/wiki/Tag_(metadata)

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 2

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Auditing

Auditing is a well-known process of tracking changes to an object of concern in the
software world. Process Platform provides an auditing framework that is used internally
by many of its components and can be used for auditing of application events as well.

Process Platform provides an auditing framework to define artifact types and provides
needed abstraction to help developers audit the needed artifacts. Process Platform
stores all the audit information in the Process Platform database configured at installation.

Process Platform provides auditing capabilities to audit critical actions:

•	 Starting and stopping of service containers

•	 Deployment of application packages, BPMs, business calendars, schedules, and
so forth.

•	 Changes to LDAP and XMLStore

•	 Invocation of web services (this can be done on web gateway level and per
service container)

•	 User login and logout

What's actually audited can be configured through filters. The administrator can view and
search specific audit events based on:

•	 Artifact type or ID

•	 User who performed the action

•	 Date range

•	 Organization context

•	 Action performed on the audited artifact, e.g. deploy or undeploy

Gateway

The Process Platform web gateway30 is the HTTP interface of the Process Platform SOA
Grid. It is meant to be a lightweight component, hence its functionality is very minimal. In
brief, it is the HTTP end-point of all web services hosted by Process Platform. Besides
that, it also supports some security features31.

The primary functions of the web gateway are:

•	 Authentication (optional).

•	 Integrated authentication, for example, Microsoft® Active Directory®.

•	 Process Platform authentication, using Single Sign-On (SSO) service.

•	 Authorization: The set of accessible web services can be limited on web gateway
level.

•	 SOAP request/response validation (optional).

•	 Verify if request is according to the WSDL.

•	 Verify if response is according to the WSDL.

•	 Translate HTTP requests into SOAP requests.

•	 Translate SOAP responses into HTTP responses.

The gateway runs in the web application server.

User Interface (UI) tasks

UI applications in Process Platform are referred to as UI tasks. UI tasks facilitate fine
grained authorizations on different elements of the UI.

The UI task modeling environment allows identifying different elements as task parts. The
task parts may be linked to web service invocations, UI elements, or a combination of
both. The UI tasks are assigned directly to users or through roles. During this assignment,
fine grained authorizations can be granted by enabling or disabling different task parts.
The assigned UI task is called a configured task. It takes care of updating all access
controls for a particular user or role that are required to invoke the UI task.

https://wiki.cordys.com/display/PI/2009/08/20/The+how+and+why+of+Cordys+HTTP+Gateway
https://wiki.cordys.com/display/PI/2009/09/10/Cordys+Web+Gateway+Security+-+Part+1

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 3

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

For example: An administrator can allow certain users to start and stop service contain-
ers, and limit other users to only view the status of service container. Both groups will
have the same UI with some options enabled or disabled. Enabling and disabling is done
through configuration, not during the development time. Bypassing the user interface
does not breach security, as the related back end authorizations are granted along with
the UI permissions.

It is possible to define composite UI tasks. UI tasks can be linked to workflow tasks
through the Inbox.

Security

Authentication

Authentication is about establishing the identity of the user within the Process Platform
system in a secure and trusted way.

Process Platform has multiple options for user authentication:

•	 Web server authentication

•	 Process Platform authentication

•	 SAML authentication

•	 OpenText™ Directory Services (OTDS) authentication

WEB SERVER AUTHENTICATION

With web server authentication, the responsibility of authenticating the user is put at the
web server. The web server handles user authentication and passes the user identity on
to Process Platform.

Web server authentication can be handled in different forms:

•	 Basic, Digest, Domain Authentication (NTLM)

•	 Certificate-based authentication.

Certificate-based authentication adds an extra level of security to the platform as Public
Key Infrastructure (PKI) is used to identify the user. Each user has a unique certificate,
which will be used for authentication in the web server. Only after the client certificate is
validated is the user identity passed on to Process Platform.

PROCESS PLATFORM AUTHENTICATION

With Process Platform authentication, user authentication is performed by the Process
Platform Single Sign-On service (SSO) instead of by the web server.

User authentication is based on a username and password and, after validating them, the
SSO generates a signed SAML 1.1 assertion that states the user identity. This SAML 1.1
Assertion includes a SAML artifact that can be used as a reference to the SAML assertion.

With each web service request from the front end, this SAML artifact communicates in
a web-browser session cookie. The web gateway looks up the corresponding SAML
assertion for the given SAML artifact and uses this internally in Process Platform.

When a user logs on to Process Platform, the username and password are entered in a
login form and sent to the Process Platform SSO service. The username and password,
by default, are validated against the Cordys Administration Repository Server (CARS).

Process Platform Authentication is an extensible system that allows custom login forms to
be used in the front end. The Process Platform SSO service also has an extension mech-
anism, so that one can also authenticate against other sources (e.g. Microsoft Active
Directory or a database).

As complete user authentication is done by Process Platform, authentication in the web
server needs to be disabled.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 4

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

SAML AUTHENTICATION

Another form of non-web server authentication is based on SAML. Here, authentication is
relayed to an external service or Identity Provider (IDP). Process Platform implements
the SAML 2 Web browser SSO profile32, which means the external IDP must support the
SAML 2.0 standard.

When Process Platform needs to authenticate the user, the browser is redirected in a
separate window to the configured external IDP that handles the authentication. After the
user is authenticated, the external IDP Posts a SAMLResponse back to the Process Plat-
form SSO service. The SAMLResponse contains a signed SAML 2.0 Assertion that states
the identity of the user. This external SAMLResponse is validated and matched with the
available users in Process Platform. After validating the external SAML 2.0 Assertion, a
new internal SAML 1.1 Assertion is generated. So the external SAML 2.0 Assertion is only
used once for user authentication.

The flow between the browser, Service Provider and Identity Provider is given below.
In this flow, Process Platform SSO is the Service provider and the User Agent is the
user's browser.

The external authentication is based on a two-way trust configuration between Process
Platform and the external IDP. The Security Admin Console in Process Platform is used
to configure one part of this trust. See the Security Management space33 for documenta-
tion and examples.

The external IDP might be cloud-based or on-premise. Direct communication between
the external IDP and Process Platform is not required. The information exchange is done
through browser redirects and automatic form submits only.

Request target resource

(Discover the IdP)

Respond with XHTML form

Request SSO Service

(Identify the user)

Respond with XHTML form

Request Assertion Consumer Service

Redirect to target resource

Request target resource

Respond with requested resource

1

2

3

4

5

6

7

8

IDENTITY PROVIDERUSER AGENTSERVICE PROVIDER

MY IDP
(OPENAM/ADFS)

ON-PREMISE

CLOUD

PROCESS PLATFORM

SERVICEDESKCRMHRMAD

http://en.wikipedia.org/wiki/SAML_2.0#Web_Browser_SSO_Profile
https://wiki.cordys.com/display/SecMan/Security

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 5

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

OPENTEXT DIRECTORY SERVICES (OTDS) AUTHENTICATION

OpenText Directory Services (OTDS) is a product for user authentication and identity
management across OpenText products. OTDS provides the user with Single Sign-On
across various OpenText products. Users can be managed in OTDS and information
about the identity of a user can be exchanged between products that support OTDS.
OTDS supports various authentication methods, including Microsoft Active Directory and
two-factor authentication. Given an authentication proof for a user in one product, OTDS
can provide the authentication proof of that same user for another product.

OTDS supports synchronization of users, groups, and group memberships across the
connected products. With this, users and groups can be managed centrally, in OTDS or
its identity provider (for instance Microsoft Active Directory), across all OpenText products.

ADVANCED AUTHENTICATION FEATURES

Advanced authentication features, such as password policies, strong authentication,
One-Time-Passwords (OTP) are supported through the external IDP.

When an SSO user experience is needed, this can be implemented by configuring multi-
ple applications with the same Identity Provider. When all involved applications share an
Identity Provider, the user only needs to authenticate once at the Identity Provider and not
on a per application basis.

Authorization

Process Platform has a role-based access system. By assigning roles to users, they get
the set of privileges as defined in the Access Control Lists (ACLs) of these roles. Roles
can be composed of other roles.

ROLES

There are two kinds of roles.

•	 A package role is defined during application development. It defines access to web
services, data, and tasks. This is packaged as part of an application package and
loaded to the Shared space. A call handling application could, for instance, introduce
an Escalation Manager role. The following role types exist:

•	 Is functional: indicates whether the role is to be shown in organization model.

•	 Is internal: indicates it should be skipped in the organizational modeler and user manager.

•	 Is technical: indicates it should be skipped in the organizational modeler but shown in the
user manager.

•	 An organizational role is defined during runtime. It is created on an organization
level and normally aggregates package roles. An organization could define the
roles Project Manager and Development Manager and assign the application role
Escalation Manager to both.

OPENTEXT
DIRECTORY

SERVICES (OTDS)

CONTENT SERVER

PROCESS PLATFORM

MEDIA MANAGER

. . . .

ACTIVE DIRECTORY®

FACEBOOK (OAUTH)

. . . .

ACTIVE DIRECTORY®

OPENTEXT
DIRECTORY SERVICES (OTDS)

LDAP

CARS

PROCESS PLATFORM

. . . .

.

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 6

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

ACCESS CONTROL LIST

The ACL contains a set of authorizations or permissions that are added to a role or user.
Each time a user accesses a protected resource (e.g. a web service), an access control
request is formulated and matched against the complete set of ACLs for this user.

Web gateway security features

The sandboxing feature of the web gateway can be leveraged to enhance the security
of an Process Platform system. It is implemented as part of the ISAPI extension and the
Apache module running in the web server.

Sandboxing is a mechanism that restricts the SOAP requests and tells them when they
can be executed on a web server. It is configured through the Management Console on
the server.

Conclusion

Process Platform offers a strong foundation to build business applications. This paper
describes the design goals of the platform and offers an insight into the design-time architec-
ture, as well as the runtime architecture of the platform.

We could only cover the highlights of the architecture here. To learn more, join the Process
Platform Community at http://community.cordys.com. You will find many articles about
various aspects of the platform, as well as an active community that can answer any question
you might have.

About OpenText

OpenText enables the digital world, creating a better way for organizations to work
with information, on premises or in the cloud. For more information about OpenText
(NASDAQ: OTEX, TSX: OTC) visit opentext.com.

Connect with us:

•	 OpenText CEO Mark Barrenechea’s blog

•	 Twitter | LinkedIn | Facebook

http://community.cordys.com/
www.opentext.com
http://www.opentext.com/portal/site/communities/ceo-blog
https://twitter.com/opentext
https://www.linkedin.com/company/opentext
https://www.facebook.com/opentext

E N T E R P R I S E I N F O R M A T I O N M A N A G E M E N T 4 7

OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

W H I T E P A P E R

Applicable Standards

Process Platform plays in the domains of business process management, cloud computing, and web services. These domains are
being standardized by standards bodies such as W3C, Oasis, and OMG, each producing numerous standards. The following table
lists the most important standards supported by Process Platform.

* Partial support | ** From Process Platform 10.8 onward

WEB SERVICES, XML, AND INTERNET STANDARDS
CSS Style sheet language to describe the look and feel of an HTML document 2.1

HTTP Hypertext Transfer Protocol is the method used to transfer information over the Internet 1.1

HTTPS Combination of a normal HTTP interaction over an encrypted secure socket layer (SSL) or transport layer security (TLS) 1.1

LDAP Lightweight Directory Access Protocol, a standard for organizing directory hierarchies and interfacing to
directory servers

V3

SOAP A standard for exchanging XML-based messages over a computer network, normally using HTTP 1.1

UDDI An XML-based protocol that provides a distributed directory that enables businesses to list themselves on the Internet
and discover other services

V2

WSDL Web Services Description Language is the standard format for describing a web service 1.1

XFORMS An XML format for the specification of user interfaces, specifically web forms 1.1

XINCLUDE A W3C specification defining a general purpose inclusion mechanism for XML documents

XML XML provides a text-based means to describe and apply a tree-based structure to information 1.0

XML-DOM Description of how an HTML or XML document is represented in an object-oriented fashion 3.0 *

XPATH Language that describes how to locate specific elements in an XML document 1.0

XSD A way to describe and validate data in an XML environment 1.0

XSLT Language for transforming XML documents into other XML documents 1.0

SAML Security Assertion Markup Language is an XML standard for exchanging authentication and authorization data
between security domains, that is, between an identity provider (a producer of assertions) and a service provider
(a consumer of assertions).

1.1 *
2.0 *

WS-I BASIC PROFILE WS-I provides resources for Web services developers to create interoperable Web services and verify that their results
are compliant with WS-I guidelines. Key WS-I deliverables include Profiles, Sample Applications and Testing Tools.

1.1

WS-I BASIC SECURITY
PROFILE

Describes a set of security specification with the goal of creating interoperable web services. Process Platform does not
support Kerberos and REL.

1.0 *

BPMN Business Process Model And Notation™ 2.0 *

CMMN Case Management Model And Notation™ 1.0 *

XPDL Standardized XML-based language for import/export of BPM 2.0

CMIS Content Management Interoperability Services 1.1 **

SECURITY STANDARDS
SSL / TLS Commonly-used protocol for managing the security of a message transmission on a network 3.0/1.2

X.509 A security standard that defines a certification process by which users are authenticated V3

XML ENCRYPTION Specification that defines how to encrypt the content of an XML element 1.0

XML SIGNATURE W3C recommendation that defines an XML syntax for digital signatures 1.0

WS-SECURITY WS-Security describes enhancements to SOAP messaging to provide quality of protection through message integrity,
message confidentiality, and single message authentication

1.1 *

JAVA STANDARDS
JMS Java messaging service is the standard API for sending and receiving messages 1.1

JMX Technology that supplies tools for managing and monitoring applications, system objects, devices, and so forth. 1.0

W H I T E P A P E R
OPENTEXT™ PROCESS SUITE
PLATFORM ARCHITECTURE

www.opentext.com/contact
Copyright © 2016 Open Text SA or Open Text ULC (in Canada). All rights reserved. Trademarks owned by Open Text SA or Open Text ULC (in Canada). (05/2016)04761EN

References

1 http://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production

2 http://en.wikipedia.org/wiki/Service-oriented_architecture

3 http://en.wikipedia.org/wiki/Software_configuration_management

4 http://subversion.apache.org/

5 http://www.eclipse.org/

6 http://msdn.microsoft.com/en-us/vstudio/default.aspx

7 http://nl.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

8 http://tomee.apache.org/

9 https://www.w3.org/MarkUp/Forms/

10 http://en.wikipedia.org/wiki/Right-to-left

11 http://www.bpmn.org/

12 http://www.w3.org/TR/scxml/

13 http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

14 https://wiki.cordys.com/display/PI/2009/06/17/The+how+and+why+of+the+Cordys+XML+engine

15 https://wiki.cordys.com/display/PI/2009/05/22/Bringing+NOM+to+the+Java+Developer

16 https://wiki.cordys.com/display/PI/Using+DOM+APIs+Over+Cordys+NOM

17 http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

18 http://en.wikipedia.org/wiki/Gossip_protocol

19 http://en.wikipedia.org/wiki/X/Open_XA

20 https://wiki.cordys.com/display/PI/2009/12/22/Guidelines+for+building+distributed+applications+and+frameworks

21 https://wiki.cordys.com/display/PI/2010/02/11/SSU+Framework+highlights+-+1

22 https://wiki.cordys.com/display/PI/2010/03/19/SSU+-+Framework+highlights+-+2

23 https://wiki.cordys.com/display/PI/2009/11/10/Distributed+cache+invalidation

24 https://wiki.cordys.com/display/PI/2009/12/01/State+registry+in+Cordys

25 https://wiki.cordys.com/display/dsc/Connector+Directory

26 http://jcp.org/en/jsr/detail?id=170

27 http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html

28 http://jackrabbit.apache.org/

29 http://en.wikipedia.org/wiki/Tag_(metadata)

30 https://wiki.cordys.com/display/PI/2009/08/20/The+how+and+why+of+Cordys+HTTP+Gateway

31 https://wiki.cordys.com/display/PI/2009/09/10/Cordys+Web+Gateway+Security+-+Part+1

32 http://en.wikipedia.org/wiki/SAML_2.0#Web_Browser_SSO_Profile

33 https://wiki.cordys.com/display/SecMan/Security

