m Opentextm WHITE PAPER

State of application security:
Trends, challenges, and
upcoming threats

Contents

Key trends 4
Core challenges and threat landscape 6

The evolving role of SAST, DAST, and

SCA technologies 8
Emerging areas in application security 10
Forecast: Looking ahead to 2026 and beyond 18
How OpenText addresses current and future application

security challenges 21
Summary 24

OpenText \ State of application security: Trends, challenges, and upcoming threats 2/24

Application security (AppSec) has become an executive-
level priority, as organizations face an increasingly complex
threat landscape and rising regulatory scrutiny. Applications
now account for a significant portion of security
breaches—roughly 25% of all breaches involve application
vulnerabilities or stolen credentials.! This is a global
concern across web, mobile, and cloud-native apps. High-
profile incidents and new regulations (from GDPR fines to
US SEC disclosure rules) are reinforcing the need for robust
AppSec programs. CISOs are expected to ensure software
is secure-by-design, with strategies spanning the entire
software development lifecycle (SDLC).

Key trends include the explosion of Al and machine learning (ML) within
applications and development, an intensified focus on software supply chain
security, and a surge in API-driven architectures—all of which expand the
attack surface. DevSecOps practices are also maturing: Development teams
increasingly drive security tool adoption, emphasizing developer-friendly
solutions and integration into CI/CD pipelines. Traditional AppSec technologies
like SAST, DAST, and SCA remain cornerstones, but their roles are evolving to
keep pace with modern development and threats. Security leaders are also

grappling with tool sprawl and skills gaps, leading nearly half of enterprises to
plan consolidation of AppSec tools for efficiency.

Overall, the current AppSec landscape is defined by complexity and
opportunity. Attackers are exploiting open-source flaws and APl weaknesses
with greater frequency, even leveraging Al to discover and weaponize
vulnerabilities. Yet, defenders also have new tools, from Al-driven anomaly
detection to automated code scanning, to bolster their posture. With global
regulations mandating stronger security governance (e.g., mandatory
breach disclosures and software bill of materials (SBOM) reporting),
executive support for AppSec has never been higher. This paper provides a
comprehensive look at the state of application security, the core challenges
and emerging trends, and an outlook into 2026 and beyond. It offers AppSec
leaders and CISOs a global perspective on how to safeguard enterprise
applications across web, mobile, and cloud environments, balancing innovation
with security and compliance.

1 AlMultiple, 20+ Application Security Statistics & Trends in 2025, July 10, 2025

OpenText | State of application security: Trends, challenges, and upcoming threats 3/24

https://aimultiple.com/application-security-statistics

61%

of organizations now
leverage Al/ML for
threat detection in
applications and APIs.

45%

Gartner predicts 45%
of organizations will
have experienced a
software supply chain
attack by 2025.

Key trends

Generative Al in applications

Organizations are embedding generative Al (GenAl) and ML models into products
and workflows at scale. More than 33% of enterprises report using GenAl in
production applications.? This introduces new vulnerabilities—for example,
prompt injection attacks on Al models and exposure of sensitive data via Al APIs.
Security teams are only beginning to understand how LLM usage expands the
application attack surface. Conversely, defenders are adopting Al for defense;
61% of organizations now leverage Al/ML for threat detection® in applications
and APIs. The dual use of Al is redefining AppSec, demanding vigilance against Al-
specific threats and creative use of Al to enhance security monitoring.

Software supply chain transparency

After breaches like SolarWinds and Log4j, attackers continue to target
upstream libraries and build processes. Governments worldwide responded
with regulations for transparency. For example, US federal agencies and even
the FDA now require software vendors to provide SBOMs (software bills of
materials), and the EU’s Cyber Resilience Act (effective late 2024) mandates
SBOMs for digital products. Australia’s cyber guidelines similarly recommend
SBOM usage. As a result, enterprises are pressuring suppliers for open-source
component lists and vulnerability data. Gartner predicts 45% of organizations
will have experienced a software supply chain attack by 2025,* underscoring
why software composition analysis and supply chain risk management are
top of mind. Indeed, modern applications are largely built, not written: A
Synopsys study found 97% of apps contain open-source components,® with
transitive dependencies (indirect open-source libraries) making up 64% of the
components. This ubiquity of open source has driven demand for greater supply
chain visibility and secure dependency management as a strategic priority.

API explosion and security focus

APl use is surging—driven by microservices, mobile apps, and third-party
integrations—with one report citing 167% growth year-over-year.® Security
maturity lags: 95% of organizations reported API security issues in production,
and 23% experienced breaches.” Common issues include broken authentication,
excessive data exposure, and missing rate limits. In 2025, API security became a
C-level priority at 46% of companies, spurring investment in testing, monitoring,
and protection. Yet only ~7.5% have mature API testing programs.® Cloud-native

2 Forrester, The State Of Application Security, 2025: Yes, Al Just Made It Harder To Do
This Right, May 15, 2025

3 Fortinet, 2025 Web Application Security Report, 2025

4 Snyk, Software Supply Chain Security White Paper, [n.d.]

5 Black Duck, Six takeaways from the 2025 “Open Source Security and Risk Analysis”
report, February 25, 2025

6 Exclusive Networks (Salt Security), Salt Security — APl Security Report 2024,

July 9, 2024
7 lbid
8 Ibid

OpenText \ State of application security: Trends, challenges, and upcoming threats 4/24

https://www.forrester.com/blogs/application-security-2025-yes-ai-just-made-it-harder-to-do-this-right
https://www.forrester.com/blogs/application-security-2025-yes-ai-just-made-it-harder-to-do-this-right
https://www.fortinet.com/resources/reports/application-security-report
https://go.snyk.io/supply-chain-security-white-paper.html
https://www.blackduck.com/blog/open-source-trends-ossra-report.html
https://www.blackduck.com/blog/open-source-trends-ossra-report.html
https://www.exclusive-networks.com/se/salt-security-api-security-report-2024/
https://www.exclusive-networks.com/se/salt-security-api-security-report-2024/
https://www.exclusive-networks.com/se/salt-security-api-security-report-2024/

43%

of organizations plan
to consolidate tools
to cut complexity and
improve integration

and container security (“Shift Left”): The shift to cloud-native architectures,
such as containerized microservices, serverless functions, and Infrastructure

as Code, is accelerating. Misconfigured cloud storage or unpatched container
images can lead to serious breaches. In 2025, container and Kubernetes
security has solidified as a key AppSec trend, with businesses embedding
security checks into DevOps pipelines (“shift-left” security) to scan images and
laC templates before deployment. DevSecOps practices have organizations
scanning code, container artifacts, and cloud configs early and often, to prevent
vulnerable software from ever reaching production.

In 2025, API security became a C-level priority at 46% of
companies, spurring investment in testing, monitoring, and
protection. Yet only ~7.5% have mature API testing programs.

Developer-centric security and DevSecOps

A noteworthy shift is the empowerment of development teams in security
decision-making. Sixty-two percent of security leaders say development teams
are now the final decision makers for AppSec tool purchases.® Developer
experience is prioritized over sheer feature count: If a scanning tool is too
slow or noisy, developers won't use it, rendering its findings moot. Successful
AppSec programs embraced this ethos by embedding security controls in IDEs,
CI/CD pipelines, and version control, and providing guardrails (secure coding
training, linting, automated scans) rather than gatekeeping. The trend has also
led to growing use of “self-service” security tooling (APIs for security testing,
automated fix pull-requests, etc.) and more cross-functional collaboration.

Tool consolidation and platform approaches

Enterprises have long relied on numerous point solutions (SAST, DAST, SCA,
WAFs, container scanners), creating inefficiencies, siloed data, and high costs.
A 2025 survey found that 43% of organizations plan to consolidate tools to

cut complexity and improve integration.’® The trend is toward unified AppSec
platforms covering code, open source, runtime protection, and API security

in one suite, offering better visibility and streamlined workflows. Automation

is also increasing, linking scanners to ticketing and Cl pipelines for faster
remediation, to maximize efficiency with limited security staff. Many AppSec
leaders view consolidation and smarter tooling as the answer to both
resource constraints and the need for faster remediation.

These key trends highlight a landscape where innovation (Al, cloud-native
tech) is running ahead of security in some areas, even as security teams
innovate with new approaches (DevSecOps, unified platforms) to catch up.

9 Forrester, The State Of Application Security, 2025: Yes, Al Just Made It Harder To Do
This Right, May 15, 2025
10 Fortinet, 2025 Web Application Security Report

OpenText \ State of application security: Trends, challenges, and upcoming threats 5/24

https://www.forrester.com/blogs/application-security-2025-yes-ai-just-made-it-harder-to-do-this-right/
https://www.forrester.com/blogs/application-security-2025-yes-ai-just-made-it-harder-to-do-this-right/
https://www.fortinet.com/resources/reports/application-security-report

The 2025 OSSRA
report found:

86%

of audited apps
contained open-
source vulnerabilities

81%

included at least one
high/critical open-
source vulnerability.

Core challenges and threat landscape

Despite heightened awareness and investment, the threat landscape is both
vast and rapidly evolving, straining traditional defenses. Core challenges and
threats include:

Expanding attack surface and vulnerability deluge

Modern applications combine legacy code, microservices, open-source libraries,
and third-party APIs—expanding the attack surface. In the past year, 26,447
vulnerabilities were disclosed," with over 75% of applications having at least
one flaw and 61% containing a high-severity issue outside the OWASP Top 10,"
pointing to the breadth of issues beyond the “usual suspects.” Security teams
face challenges prioritizing and patching amid continuous deployments, and
unpatched vulnerabilities remain a leading cause of breaches. In 2025, about
60% of breaches™ involved known, unpatched flaws. Timely patching is critical,
but operational constraints and fear of system disruption often delay fixes.

Open source and supply chain risks

The ubiquity of open-source software in applications introduces significant
risk if not managed. Nearly all commercial apps use open-source components,
many with known vulnerabilities or license risks.

The 2025 OSSRA report found 86% of audited apps
contained open-source vulnerabilities, and 81% included at
least one high/critical open-source vulnerability.

Compounding the issue, 91% of applications contain outdated open-source
components™—most more than 10 versions behind. This threat backdrop
makes it challenging for enterprises to track their software supply chain—
many lack an up-to-date inventory of which components (and versions) are in
their code, especially transitive dependencies that are “hidden” inside other
packages. Visibility and governance over open-source usage remain a core
challenge, requiring organizations to adopt SCA tools, maintain SBOMs, and
stay alert to third-party advisories.

API and microservice vulnerabilities

As companies pivot to API-first architectures, APIs have become prime targets,
with threats like broken object level authorization (BOLA), where attackers
manipulate object IDs in an API call to access data they shouldn’t. Other
common APl issues include lack of input validation on JSON/XML payloads,
overly permissive CORS configurations, and inadequate authentication on
internal microservice APIs. Business logic flaws are especially challenging—

11 AlMultiple, 20+ Application Security Statistics & Trends in 2025, July 10, 2025

12 1Ibid

13 Ibid

14 Black Duck, Six takeaways from the 2025 “Open Source Security and Risk Analysis”
report, February 25, 2025

OpenText | State of application security: Trends, challenges, and upcoming threats 6/24

https://aimultiple.com/application-security-statistics
https://aimultiple.com/application-security-statistics
https://aimultiple.com/application-security-statistics
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html

these are not simple coding bugs, but design issues (like an e-commerce

API not limiting quantity in an order, enabling abuse). Traditional scanners
have difficulty catching these, meaning they often slip through to production.
Additionally, bots and automated scripts hammer APIs with credential stuffing
and DDoS attacks; in fact, DDoS was ranked the top bot-driven threat to web
apps/APls by many security professionals.” Yet, many organizations lack full
visibility into their APl inventory—a significant number report struggling to
even identify all active APIs and applications in their environment.

Cloud misconfigurations and secrets management

The move to cloud and DevOps has shifted some attack focus to configuration
issues rather than code flaws. A single misconfiguration in cloud infrastructure
can have dire consequences—for instance, an open S3 bucket or an overly
broad IAM role can lead to massive data leaks or privilege escalation. Similarly,
hardcoded secrets or tokens in app code (or Cl pipelines) are a major risk;
attackers actively scan public repos for leaked API keys. Many breaches

in recent years trace back to mismanaged cloud app configs or exposed
credentials. The challenge for AppSec teams is working with cloud security and
DevOps teams to ensure secure defaults and automated checks.

Sophisticated and automated attacks

We see ransomware gangs exploiting web app flaws to gain footholds and
botnets systematically probing web applications for common vulnerabilities.
Attackers are also using Al-driven tools to find and exploit vulnerabilities
faster.’® For example, machine learning can help malware adapt to defenses

or help attackers fuzz software to discover zero-days more efficiently. There

is concern that generative Al could enable less-skilled adversaries to produce
sophisticated exploits or phishing content at scale. These tools mean attackers
can quickly weaponize new vulnerabilities and often coordinate attacks,
underscoring the need for continuous testing and monitoring.

Regulatory and compliance pressures

Worldwide privacy laws (GDPR, CCPA) and industry standards (PCI DSS 4.0,
HIPAA) demand robust protection, with GDPR fines exceeding $1.2 billion in a
single year (2021) and that trend continues upward.” New SEC rules require
public companies to disclose material cyber incidents within four business
days and report annually on cyber risk governance. The positive side is that
regulation has pushed AppSec higher on the agenda, but achieving and proving
compliance remains a non-trivial challenge that requires process maturity.

https://www.fortinet.com/resources/reports/application-security-report
https://www.darkreading.com/cyber-risk/6-ai-related-security-trends-watch-2025
https://aimultiple.com/application-security-statistics

The threat landscape
is marked by a

high volume of
vulnerabilities,
automated attacks,
and new frontiers like
APIls and open-source
supply chain risks.
Organizations must
reduce their internal
risk (secure coding,
proper configuration,
prompt patching)
and defend against
external threats
(skilled adversaries
and bots)—all under
the watchful eye

of regulators and
customers.

37%

of organizations now
perform SCA during
development to catch
vulnerable open-
source use before it
progresses.

The evolving role of SAST, DAST, and
SCA technologies

Static Application Security Testing (SAST), Dynamic Application Security
Testing (DAST), and Software Composition Analysis (SCA) have long been the
pillars of application security tooling. These technologies continued to mature
and adapt, often used in concert as part of an integrated DevSecOps toolchain.
Below is how each is evolving in the enterprise context:

Static Application Security Testing (SAST)

SAST tools analyze source code (or compiled bytecode) for vulnerabilities
without executing the program. The role of SAST is shifting earlier in the
development lifecycle (“shift-left”) so issues are caught at commit or build
time. SAST now has to rise to new challenges, as developers using tools

like GitHub Copilot can unintentionally introduce vulnerabilities or licensing
issues into code. SAST detects these Al-introduced flaws. Additionally,

SAST is expanding to cover more languages and frameworks (for example,
infrastructure-as-code templates, mobile app code, and even binary scanning
when source is not fully available). It is becoming a continuous, invisible part of
coding, often running in the background on every pull request.

Dynamic Application Security Testing (DAST)

DAST solutions test running applications by simulating attacks and analyzing
responses. DAST tools have evolved to be more APl-aware and automated.
Modern DAST can import API definitions (Swagger/OpenAPI) to systematically
test REST and SOAP endpoints, which is vital given APIs are a growing attack
surface. Interactive DAST and cloud-based DAST services can run continuously
against staging environments or even production to detect changes or emerging
vulnerabilities. Modern DAST engines often leverage headless browsers to
better analyze complex single-page applications and have improved in crawling
modern web interfaces (e.g., SPAs, which traditional scanners struggled with).
They also use machine learning to reduce false positives, differentiating
intentional app behavior from genuine security issues. Despite advancements,
DAST faces challenges like deep logic testing, which is why many organizations
complement DAST with manual pen-testing for business logic flaws. Still, DAST’s
ability to find exploitable conditions (like an open admin interface or a XSS
vulnerability) in a running app makes it indispensable.

Software Composition Analysis (SCA)

SCA tools scan applications for open-source components and third-party
libraries, identifying known vulnerabilities) and license compliance issues. SCA
has arguably become as crucial as SAST/DAST due to the surge in supply chain
attacks. Modern SCA solutions can automatically produce an SBOM for each
build, flag any component with known CVEs, and even suggest or automate
upgrading to safer versions. SCA is also used to enforce corporate open-
source policies. An interesting trend is integrating SCA early in development:
Nearly 37% of organizations now perform SCA during development to catch
vulnerable open-source use before it progresses. This reflects a shift-left

for SCA akin to SAST'’s. Additionally, the importance of SCA is underscored by

OpenText \ State of application security: Trends, challenges, and upcoming threats 8/24

regulatory pushes. With requirements for SBOMs and proof of vulnerability
management, SCA reports are becoming deliverables in contracts and
compliance audits. Some SCA tools now tie into repository management,
automatically checking pull requests that introduce new dependencies. The
evolution of SCA is also towards remediation support—not just flagging a
library as vulnerable but helping developers update it.

Moreover, the industry is moving toward unified AST platforms where SAST,
DAST, SCA, and possibly IAST results are correlated for a single view of
application risk. This helps eliminate duplicate findings and allows teams to
prioritize more effectively (e.g., seeing that a vulnerability flagged by SAST
is in a library also flagged by SCA as vulnerable and is exploitable via DAST).
Such correlation and context are improving remediation efficiency.

The goal is a seamless DevSecOps workflow, where code is continuously
scanned (statically and dynamically), components are continuously inventoried
for risks, and developers get immediate feedback to fix issues long before
applications are in front of users.

These tools are increasingly augmented by Al/ML features as well. For example,
some SAST vendors introduced Al to better detect patterns or suggest fixes, and
some DAST solutions use ML to distinguish normal vs. attack traffic.

OpenText \ State of application security: Trends, challenges, and upcoming threats 9/24

Emerging areas in application security

The fast pace of technology means new frontiers in AppSec are constantly
emerging. In 2025, several areas gained prominence due to changes in how we
build software and evolving external requirements. Each of these is shaping
the future of application security:

Al/ML in application security

Artificial intelligence and machine learning are double-edged swords in the
realm of application security. On one hand, Al/ML are being embedded into
applications themselves at an unprecedented rate, and on the other, they are
powerful tools for both attackers and defenders.

Within applications, AlI/ML components introduce new risks that AppSec
teams must account for. For example, many apps how incorporate Al models
(like recommendation engines or LLM-based chatbots) or call out to Al
services via APIs. This creates novel attack vectors, such as model poisoning,
prompt injection, and data leakage through Al APIs. A noteworthy concern

is that organizations have rushed to deploy generative Al features without
fully understanding the security implications. Forrester reports that one-third
of organizations are using generative Al in production apps' potentially
without robust safeguards. An embedded Al model might inadvertently expose
sensitive training data or be manipulated by crafted inputs. Furthermore, Al
features often rely on extensive API integrations and each of those API calls (to
an LLM service or ML microservice) expands the surface for APl abuse.

On the development side, Al-assisted coding tools like GitHub Copilot, Amazon
CodeWhisperer, have gone mainstream. A survey of 1,700 IT pros found 81%
are using GenAl to assist with coding and software development.’ While
these tools boost productivity, they can also generate insecure code or copy
vulnerable code patterns from training data. They might even introduce legal
risk by reproducing licensed code. Security leaders are now tasked with
mitigating these risks by implementing policies around Al-assisted code use,
scanning Al-generated code rigorously, and using tools that can detect secrets
or known vulnerable snippets potentially inserted by Al. From a defensive
standpoint, Al/ML is becoming a force multiplier for security operations. In
AppSec, this means automated vulnerability discovery, anomaly detection in
application behavior, and intelligent triaging. For example, some advanced
scanning tools now use ML to reduce false positives or to pattern-match code
against known vulnerability fingerprints more effectively. In runtime protection,
Al-driven systems analyze traffic to distinguish legitimate users from bots or
detect subtle attacks that signature-based systems might miss. An industry
survey found 61% of organizations are leveraging Al for threat detection in
applications,?° for instance, using ML models to detect anomalies in APl usage
that could indicate an attacker probing for weaknesses. Additionally, Al can
help correlate signals faster than a human might.

https://www.forrester.com/blogs/application-security-2025-yes-ai-just-made-it-harder-to-do-this-right/
https://www.forrester.com/blogs/application-security-2025-yes-ai-just-made-it-harder-to-do-this-right/
https://www.darkreading.com/cyber-risk/6-ai-related-security-trends-watch-2025
https://www.fortinet.com/resources/reports/application-security-report

Attackers, however, are equally keen on Al. Threat actors are weaponizing Al
to automate and enhance attacks. One concern is Al-generated malware and
exploits: tools that use machine learning to mutate malware to evade defenses,
or to automatically find exploitable conditions in software (through Al-driven
fuzzing that doesn’t require source code). Ransomware gangs are prototyping
Al that can identify which data to encrypt for maximum impact or automatically
bypass certain security tools. Phishing campaigns are using Al to create highly
convincing deepfakes and personalized phishing messages at scale, lowering
the barrier for large-scale social engineering.

One emerging concept is “Shadow Al,” the ungoverned use of Al tools by
employees or developers without oversight. This can lead to sensitive code or
data being unintentionally shared with external Al services (as happened when
some employees pasted proprietary code into public chatbots). CISOs are
growing concerned about this and the data exposure risks from unsanctioned
Al use. There's also anticipation of new regulations (like the EU Al Act) that

will place compliance requirements on Al systems which could impact how Al
features in applications are secured and audited.

Moving forward, we expect “Al security” to become its own discipline
intersecting with AppSec—including practices like adversarial testing of ML
models, validation of Al outputs, and continuous monitoring for Al-driven
anomalies. For now, security leaders should embrace Al carefully.

Software supply chain security

After several wake-up calls in recent years, software supply chain security
has solidified as a top-tier priority. This area covers the security of all
components that go into software (open-source libraries, third-party services,
build tools) and the processes by which software is developed and delivered.

As noted earlier, open-source components are ubiquitous— 97% of
applications contain open-source software,? and these components often
come with known vulnerabilities or can be compromised at the source.
Attackers have various techniques to exploit this:

* Typosquatting and repository attacks: Planting malicious packages in public
repositories with names similar to popular ones, hoping developers install
them by mistake. This has happened multiple times, leading to malware
inside corporate networks.

Hijacking maintainer accounts or build infrastructure: We've seen instances
where attackers took over the account of an open-source project maintainer
or Cl system, then pushed a tainted update (as in the SolarWinds 2020
incident). Organizations consuming these updates unknowingly brought in
malware.

« Exploiting vulnerabilities in dependencies: Often companies don’t know
they are using a vulnerable library until a major CVE (like Log4Shell in Log4j)
surfaces. The scramble to find and fix it across dozens of applications
highlights the need for better inventory and patching mechanisms.

21 Black Duck, Six takeaways from the 2025 “Open Source Security and Risk Analysis”
report, February 25, 2025

OpenText \ State of application security: Trends, challenges, and upcoming threats 11/24

https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html

Governments and industry groups are enforcing more rigorous supply chain
security measures. This push for transparency means that in procurements
0 and partnerships, companies increasingly ask for evidence of secure
60 /o software practices. In fact, Gartner predicts that by the end of 2025, 60% of
organizations will use cybersecurity risk as a key determinant in third-party
business dealings.?? Practically, this means enterprises must vet the security
of software vendors, demand vulnerability disclosure practices, and include

Gartner predicts security criteria in contracts Key developments and practices in software
that by the end supply chain security include:

of 202.5' 6.0% Of. o Comprehensive SCA and SBOMs: Companies are leveraging SCA tools to
organizations will use generate SBOMs for their applications. An SBOM is essentially an ingredient
cybersecurity risk as list of software. By having SBOMs, organizations can quickly answer

a key determinantin “are we affected by the latest Struts/Log4j/XYZ vulnerability?” and also

communicate to customers what’s inside their software. Many are sharing

thlrd_party business SBOMSs with customers or using them internally for risk assessments.

dealings.
« Vulnerability management and patching processes: Given that 91%
of applications have outdated components, a big focus is establishing
processes to update dependencies continuously. The idea is to shrink
that window of exposure for known flaws. DevSecOps pipelines are being
configured to fail builds if a critical vulnerability is present in a component
(policy-based controls).

-
-
—

-
—
—
'Y

A B S g

- ——

A BB Swet, ™

A RES SENNL g
A RN, NN e -
W RIS e —
W SRR RN,

o Security of build and deployment pipelines: The supply chain extends to
CI/CD. Attacks on Cl pipelines can insert malicious code during the build (.
More organizations are hardening these environments: using principles of
zero trust, signing artifacts (so that any tampering with binaries would be
detectable), and implementing least privilege for pipeline tools. The concept
of “pipeline integrity” is on the rise, with frameworks like SLSA (supply-
chain levels for software artifacts) providing guidelines to achieve tamper-
resistant build processes. Third-party risk assessments: There is now often

22 TechRepublic, Gartner reveals 8 cybersecurity predictions for the next 4 years,
June 22, 2022

OpenText | State of application security: Trends, challenges, and upcoming threats 12/24

https://www.techrepublic.com/article/gartner-reveals-8-cybersecurity-predictions-for-the-next-4-years

The mantra for
software supply chain
security in 2025 is
“Know your code"—
what’s in it and where
it comes from, and
keep it updated and
secure. Still, many
companies are early
in building these
capabilities, and
attackers will look

for the weakest links.
By 2026 and beyond,
supply chain security
will mature into
standardized practice
and possibly even
see more regulatory
requirements
imposing liability on
software providers for
insecure components.

a dedicated function or team to evaluate the security of third-party software
and services. This can involve questionnaires, reviewing pen-test reports or
ISO certifications, and requiring certain practices (e.g. annual code audits
or secure development training). For open-source projects that are critical
(think OpenSSL, etc.), some companies even contribute back resources or
funding to ensure those components stay secure and maintained.

« Runtime protections for supply chain attacks: Because not all supply chain
attacks can be prevented (zero-day vulnerabilities or a trusted vendor
unknowingly shipping a backdoor), detection is vital. Organizations are
deploying monitoring at runtime to catch unusual behavior, for example, if a
library suddenly starts making outbound network calls it never did before,
or if an application tries to modify files it shouldn’t. Endpoint and workload
protection platforms can sometimes detect these anomalies.

¢ Collaborative industry initiatives: Industry and government collaborations
like the Open-Source Security Foundation (OpenSSF) are working on
securing the ecosystem (initiatives like publishing best practices and tools
for open-source maintainers). The US and EU are also funding efforts to
audit widely used OSS projects.

API security

API security has emerged from the shadow of “traditional” web application
security to become a specialization of its own. As businesses expose more
APIs (for mobile apps, partner integrations, microservice communication, etc.),
adversaries have followed the data—attacking APIs to exfiltrate information,
abuse functionality, or compromise systems. APIls are both a critical enabler
of digital business and a significant source of security risk that must be
addressed head-on.

As we've stated earlier, insecure APIls are not a hypothetical threat but a
commonplace reality. Several factors contribute to the challenge:

« Rapid proliferation: Development teams deploy APIs at a rapid pace,

sometimes without the knowledge of central IT/security. With microservices,
one application might comprise dozens of internal and external APIs. Keeping
an up-to-date inventory is difficult.

Complex access patterns: Unlike a web app with a clear user interface, an API
might be consumed by many clients (mobile apps, IoT devices, third parties).
Ensuring proper auth and access control for each use case is complex.

Many API breaches involve mistakes in authentication/authorization logic,

for instance, not verifying the caller’s permissions on a resource (leading to
broken object level authorization issues, OWASP API Top 10 API1:2023).

Data exposure: APIs often expose raw data (in JSON/XML) and rely on the
client to filter or display it appropriately. This can lead to excessive data
exposure where APIls return more data than necessary (maybe including
sensitive fields), trusting that the client will hide it—a trust that attackers can
exploit by directly calling the API.

OpenText \ State of application security: Trends, challenges, and upcoming threats 13/24

Lack of visibility and testing: Traditional testing tools were web-page
centric and often missed APIs, especially if those APIs weren’'t documented
or linked. Many security teams found that their DAST scanners did not
automatically test all APl endpoints, and developers weren't including APIs in
their regular testing either. As noted, only about 7.5% of organizations have
dedicated API testing and modeling programs,?® meaning the majority rely
on ad-hoc or manual efforts, which leave gaps.

In response, APl security tooling and practices have boomed:

APl discovery: One of the foundational steps is discovering all APIs in
use. New tools can sniff network traffic or integrate with APl gateways to
automatically catalog APIs, endpoints, parameters, and usage patterns.
This helps identify “rogue” or undocumented APIs. Some enterprises also
mandate that all new APIs be registered in a central catalog and have an
OpenAPI/Swagger spec, which can be used by security tools.

Security testing for APIs: Penetration testing is being extended to focus
on APIs. Automated API testing tools can take an API spec and generate
security tests (fuzzing inputs, testing auth bypasses, etc.). We've also seen
uptick in schema analysis—reviewing APl schemas for risky patterns.
OWASP updated its API Security Top 10 in 2023, which gives teams an up-
to-date blueprint of issues to test for.

Runtime protection and monitoring: Many organizations deployed API
gateways or WAFs with API-specific features. These act as chokepoints to
enforce authentication, rate limiting, and to detect common attacks. API
monitoring is equally crucial: analyzing logs to spot abnormal behavior,

such as one user suddenly requesting thousands of records (potential data
exfiltration) or a spike in 401/403 errors (which might indicate an attacker
probing for valid endpoints). Advanced solutions using Al help profile normal
APl usage and flag anomalies, which is essential for catching logic abuses
that signature-based tools might miss.

Shift-left API security: Development teams are being encouraged to include
security earlier when building APIs. This includes code-level controls (using
secure frameworks that handle auth for you), performing threat modeling
specifically for APIs (thinking through how each endpoint could be misused),
and using linters/static analysis tuned for APl issues. Some organizations have
also started using “API security checklists” during code reviews, which align
with things like OWASP API Top 10 to ensure common mistakes are caught.

C-level awareness and strategy: Importantly, APl security has reached the
boardroom. With 46% of companies saying API security is discussed at the
C-level now,?* we see formal APl security programs being chartered. This
might entail appointing an API security lead, building cross-functional teams
to govern APIs, and setting KPIs such as reducing the number of incidents
or time to remediate API vulnerabilities. Executive awareness also means
budget: Spending on API security solutions (testing tools, management
platforms) has increased.

https://www.exclusive-networks.com/se/salt-security-api-security-report-2024
https://www.exclusive-networks.com/se/salt-security-api-security-report-2024

The threat landscape for APIs includes notable incidents like the compromise
of APIs at financial institutions and critical vulnerabilities discovered in popular
API frameworks. Also noteworthy is the interaction of API security with OAuth/
OIDC and third-party integrations—configuration errors in how tokens are
validated or how scopes are enforced have caused some security lapses.
Attackers also exploit development/test APIs that are inadvertently left
exposed (for example, a “debug” API that was deployed and forgotten).

API security will only grow in importance, as the number of APIs is expected
to keep rising.Organizations will likely integrate API security checks into every
stage: design (using secure design patterns), development (linting and SAST
for APl issues), testing (specialized DAST/fuzzing for APIs), and operations
(continuous monitoring and incident response playbooks for APl abuse). The
guiding principle must be zero trust for APls. Never assume an APl is safe

by obscurity or that internal APls won’t be targeted. Every API call should be
authenticated, authorized, validated, and logged.

Regulatory impacts and compliance landscape

Regulation has become a driving force in application security practices
globally. This includes data protection laws, industry-specific regulations,

and new cybersecurity-focused rules from governments. The “compliance
landscape” is now a key consideration for AppSec leaders, as non-compliance
can result in heavy fines, legal liability, and reputational damage.

Global data protection and privacy laws

Since GDPR in 2018, many regions—including CCPA/CPRA (California), LGPD
(Brazil), POPIA (South Africa), and PDPA (Singapore)—have enacted similar
privacy laws requiring data protection by design and default. For AppSec,

this means strong access controls, encryption in transit and at rest, and

timely breach notification. GDPR fines of up to 4% of global turnover have
driven investment in prevention, with more applications adopting client-side
encryption and tokenization. Privacy laws also reinforce secure development
practices through DPIAs, embedding privacy and security reviews into the SDLC.

OpenText | State of application security: Trends, challenges, and upcoming threats 15/24

The regulatory and
compliance landscape
drives improved
AppSec and poses an
additional challenge
to manage. It compels
organizations to:

D

Build security in
(to meet “secure by
design” expectations).

E
Prove it with

documentation and
reports (SBOMs,

compliance reports, etc.).

Respond swiftly

and transparently to
incidents (due to breach
notification rules).

K

=}
Keep up with an ever-
evolving patchwork of

laws across jurisdictions.

OpenText \ State of application security: Trends, challenges, and upcoming threats

Cybersecurity disclosure and governance (SEC rules in the US)

A landmark development is the US SEC’s cybersecurity disclosure rules
adopted in 2023 (effective 2024-2025). Public companies are now required to:

¢ Report material cybersecurity incidents within 4 business days via an 8-K
filing (with some allowances for law enforcement delays).

« Annually disclose their cybersecurity risk management and governance in
10-K/20-F, including the board’s oversight of cyber risk and management’s
processes.

This raises AppSec stakes—boards demand assurance of strong controls,

and CISOs work closely with legal teams to define “material” incidents, ensure
rapid escalation, and prepare accurate filings. Even amid debate, transparency
and potential executive liability drive stronger AppSec programs, from secure
coding to continuous testing, to reduce the risk of reportable breaches.

Sector-specific regulations and standards
Different industries face their own rules that affect AppSec:

« Financial services: In the EU, the Digital Operational Resilience Act (DORA)
came into force in 2025, requiring banks and financial entities to ensure the
security of network and information systems, including rigorous testing. In
the US, financial regulators also expect strong application controls. Many
banks adhere to PCI DSS if they handle payments—PCI DSS v4.0 has
enhanced requirements for software security, such as more frequent code
reviews and vulnerability scans.

* Healthcare: In the US, HIPAA and the HITECH Act mandate protection
of electronic health data. For app dev, that means audit logs, user
authentication, and encryption must be built in. There is also increasing
oversight on medical device software.

« Critical infrastructure: Governments have expanded the definition of critical
infrastructure to include IT and software providers. For example, the EU’s
NIS2 Directive (effective 2024) imposes security and incident reporting
requirements on a wide range of sectors, including digital services and
software companies. Many countries (Australia, India, etc.) require timely
breach reporting for critical service providers as well. This pushes AppSec
teams to implement continuous monitoring and incident detection so they
can meet tight reporting timelines.

16/24

Product security and liability

The EU is leading with legislation like the Cyber Resilience Act (CRA), which,

as mentioned, mandates that products with digital elements (software, loT
devices, etc.) are built securely and come with vulnerability disclosure policies
and SBOMs. Similarly, there’s discussion in the US about imposing liability on
software makers for egregious security flaws (shifting some responsibility

from users to producers). This signals a future where insecure software could
mean legal consequences, not just technical ones. Forward-looking companies
are already adopting secure development frameworks (like NIST SSDF),
documenting their security controls, and preparing to furnish this documentation
to regulators or customers.

International and cross-border challenges

With so many regional laws, global enterprises face the challenge of

complying everywhere. Data residency and sovereignty laws might affect how
applications are designed (e.g., using regional shards so personal data doesn’t
leave a country). Encryption mandates or bans in certain jurisdictions could
complicate things. A practical example: China’s Cybersecurity Law and ensuing
regulations require companies to undergo security assessments if they

export data abroad, pushing firms to localize data storage and double down

on security to pass audits. Similarly, Russia’s data laws and Middle Eastern
countries’ regulations all impose various security expectations.

Compliance as a baseline, not a goal

One common understanding is that compliance does not equal security, but it's
the minimum bar. Many organizations use frameworks like ISO/IEC 27001, NIST
Cybersecurity Framework, SOC2, or OWASP SAMM to structure their security
programs and demonstrate due diligence. These frameworks indirectly push
better AppSec. Being compliant often forces organizations to adopt certain
AppSec practices (regular scans, training developers, access controls, etc.).
The trick is doing so in a way that actually reduces risk, not just checks a box.
For instance, the better organizations have transformed requirements (like “do
an annual app pen-test”) into meaningful practices (like a continuous testing
program combined with bug bounty, far exceeding the bare minimum).

For AppSec leaders, staying ahead means collaborating with legal/compliance
teams, tracking emerging laws (like Al regulations, loT security laws), and baking
compliance requirements into the development lifecycle early (so that being
compliant is a natural outcome of the way software is built). The trend is clear:
security is becoming a legal requirement, not just a technical nice-to-have.

objects.active &
str(modifien o))
o

Forecast: Looking ahead to 2026 and beyond

Based on current trends, expert predictions, and emerging technologies, the
following developments are expected soon:

0 Al everywhere: Smarter apps and smarter attacks

Al will be deeply embedded in development and security workflows.
Developers will use Al for code generation, testing, and remediation, supported
by emerging “Al governance” within DevSecOps to ensure secure, compliant
output. Security tools like SAST and DAST will leverage Al to suggest fixes,
while attackers will use Al to automate zero-day discovery and adaptive
malware—driving an arms race of defensive vs. offensive Al. Organizations
that pair skilled professionals with Al-driven tools will be best positioned to
manage growing threats. Fully autonomous security remains unlikely, but
human-Al collaboration will dominate. Regulatory guidance on Al use and
transparency will also shape security practices.

e Further shift-left with “continuous everything”

As Agile, continuous deployment, and platform engineering accelerate
development, AppSec must match pace. By 2026, high-performing teams

will adopt continuous security—integrating checks at each commit,

automated threat modeling, and real-time scanning into daily workflows.

SAST feedback in IDEs, background DAST on each deployment, and security
testing embedded in QA will blur the line between development and security.
Emerging concepts like “continuous authorization” will let apps adapt defenses
in real time, extending Zero Trust principles to the application layer.

e Unified platforms and DevX focus

Tool consolidation will drive end-to-end AppSec platforms from major vendors
and cloud providers, covering code, dependencies, infrastructure, and runtime
with centralized analytics. These platforms will correlate issues across layers,
leverage cloud-scale analytics, and prioritize developer experience by integrating
into toolchains and providing actionable insights. Success will hinge on minimal
friction for developers, with security “as code” and “as data” enabling policies,
tests, and security telemetry to be defined, queried, and visualized seamlessly.

0 Rise of software liability and secure software as a
market differentiator

With the EU Cyber Resilience Act as precedent, by 2026 software makers may
face legal accountability for preventable flaws. Certification programs are
likely, similar to US loT labeling efforts. Buyers will demand proof of security—
continuous vulnerability disclosure, SBOMs, and adherence to frameworks

like NIST SSDF or ISO 27034. Vendors investing in security could gain trust
and cyber insurance advantages, while others risk higher premiums, fines, or
lost business. Gartner predicts that by 2026, 50% of C-level executives will
have cybersecurity risk performance tied to their contracts, making “secure by
design” an enforceable priority.?®

25 TechRepublic, Gartner reveals 8 cybersecurity predictions for the next 4 years,
June 22, 2022

OpenText \ State of application security: Trends, challenges, and upcoming threats 18/24

https://www.techrepublic.com/article/gartner-reveals-8-cybersecurity-predictions-for-the-next-4-years

New frontiers: Quantum prep, 1oT/OT convergence, and
beyond

While these are slightly further out, forward-looking AppSec teams are starting
to consider them:

« Post-quantum cryptography: By 2026, the threat of quantum computers
breaking current encryption might not be immediate, but proactive
organizations (especially in government, finance) will begin transitioning to
quantum-resistant algorithms for applications. This is a huge undertaking
(as it involves updating cryptographic libraries, protocols, possibly hardware
accelerators) and needs long lead times. So, 2026 might see the first wave
of mainstream applications advertising “post-quantum” security features,
especially as NIST has already standardized some post-quantum algorithms.

* Secure Software Supply Chain ecosystems: We may see more industry-
wide collaborations to secure supply chains—for example, package
repositories implementing mandatory 2FA for maintainers (some already
have), or automated scans for malicious packages. By 2026, concepts like
dependency signing and verification (e.g., using Sigstore and Sigstore’s
Cosign to sign container images and packages) could become standard.
Ideally, an end-to-end verified chain: from a developer’s commit (signed)
to the build (reproducible builds and signed artifacts) to the deployment
(infrastructure verifying those signatures). This could drastically reduce
certain attack vectors, but requires broad adoption.

« Application security for OT/embedded systems: As operational technology
and IT converge, the line between enterprise app security and product
security blurs. AppSec teams might find themselves responsible for the
security of software running in cars, factories, medical devices, etc.,
especially as those become connected. Techniques from traditional AppSec
will be applied in these domains (e.g., threat modeling a power plant’s
monitoring app similarly to a banking app). The convergence also means
more responsibility—an app vulnerability in an OT environment could lead
to physical consequences. So by 2026, expect stronger regulation and
guidelines specifically targeting software in critical infrastructure, and cross-
pollination of AppSec best practices into those areas.

G Human factor and skills

Despite automation, the need for skilled AppSec professionals will remain
acute. If anything, by 2026 the skill gap might widen because securing complex
Al-driven, cloud-native systems is even more challenging. Organizations will
invest more in talent development. We might also see more outsourcing or
“AppSec as a Service” models to cope with skill shortages, where specialized
firms manage certain testing or monitoring tasks for companies that can’t
hire enough in-house expertise. However, long-term, a new generation of
developers educated with security mindset from the start could begin to
alleviate this. Ideally, by 2026 security starts to become a standard part of all
software engineering curricula, which will gradually infuse industry with more
security-aware professionals.

0 Threat landscape 2026+

We anticipate attackers will continue to do what works (social engineering,
exploiting unpatched flaws) but will also pivot to new targets. APIs, as discussed,
will remain a hot target; supply chain attacks are likely to increase before

they decrease (because many companies are still catching up on defenses).
Ransomware may evolve tactics if payments become harder (e.g., more data
theft for extortion). The possibility of more nation-state cyber activity is high,
potentially aiming at software critical to economies. One can imagine attackers
trying to compromise widely used software at the source (similar to SolarWinds)
for espionage or disruption purposes, which reinforces everything we said
about supply chain security being vital. Attacks on CI/CD or software updates
could become more frequent if they continue to yield success. The geopolitical
dimension of AppSec will thus be more pronounced; companies might need to
consider threats from advanced persistent threat (APT) groups and align their
defenses accordingly, not just worry about cybercriminals.

In conclusion, we will likely see application security become even more
ingrained in the fabric of how we build software—out of necessity.
Organizations that embrace a forward-looking approach will be in the

best position to protect their applications and users. The journey will

require adaptability; AppSec leaders should foster a culture of continuous
improvement and learning, as the threat and technology landscape can shift
rapidly. Yet, the progress so far gives reason for optimism: security is now a
board-level issue, developers are more engaged in security, and powerful
new tools are emerging to tip the balance in favor of the defender. We expect
application security to be not just a reactive cost center, but a strategic
enabler of trust in the digital enterprise—a world where organizations can
confidently innovate through software, knowing they have the resilience to
withstand the cyberthreats of the future.

OpenText | State of application security: Trends, challenges, and upcoming threats 20/24

How OpenText addresses current and future
application security challenges

OpenText Application Security is uniquely positioned to help enterprises meet
these challenges head-on with a modern, integrated, and Al-augmented platform.

0 Tackling the Al explosion in development

Challenge: More than 33% of enterprises use GenAl in production, expanding
the attack surface and introducing new classes of vulnerabilities.

OpenText response:

« OpenText™ SAST Aviator™, powered by LLMs, automates vulnerability
triage and remediation guidance, significantly reducing false positives and
boosting developer productivity.

* OpenText platform detects risks from insecure Al model integration (e.g.,
Python AutoGen, OpenAl libraries) via updated content from Software
Security Research.

« Planned features include macro generation for authenticated DAST scans in
GenAl-driven apps.

e Securing the Software Supply Chain

Challenge: Supply chain attacks are increasingly sophisticated, targeting
dependencies and pipelines.

OpenText response:

¢ OpenText embeds Software Composition Analysis (SCA) across the SDLC
to identify and manage vulnerabilities in open-source components. Open-
Source Select empowers developers to make better, compliant package
choices at intake.

« Through our integration with Debricked, we enhance visibility into open-
source health and ecosystem risk by leveraging community and contextual
intelligence—helping teams evaluate popularity, maintenance, and security
posture before adoption.

« Additional controls include integration with Sonatype Nexus Firewall and
the Advanced Legal Pack for license governance and real-time vulnerability
filtering. OpenText’s approach aligns with NIST 800-53 SR controls and
mandates a designated supply chain advocate for each product line—
ensuring accountability and continuous risk oversight.

e API security as a core priority
Challenge: API-driven architectures dominate, making APIs a top attack vector.
OpenText response:

e SAST, DAST, and IAST engines support comprehensive APl scanning (REST,
gRPC, GraphQL), aligned with the 2023 OWASP API Top 10.

e OpenText’'s DAST solution includes workflow-driven and macro-enabled
scans to handle complex API scenarios.

0 DevSecOps at scale with developer-first focus

Challenge: Dev teams now influence tool selection and expect seamless
integration into CI/CD.

OpenText response:

« OpenText supports deep integrations across IDEs, Git repositories, CI/CD
platforms (e.g., Jenkins, GitHub Actions), and ticketing tools (e.g., Jira).

« Solutions are built for automation—ScanCentral for SAST/DAST enables
parallelized scanning across cloud and on-premises environments.

« Secure Code Warrior integration delivers contextual training tied to real
findings, reinforcing secure coding early in the lifecycle.

e Managing tool sprawl and operational complexity

Challenge: Nearly half of enterprises are consolidating AppSec tools due to
cost and management concerns.

OpenText response:

« Offers a unified application security platform with centralized policy,
reporting, and compliance capabilities through Software Security Center and
Application Security Insight.

« Modular architecture supports SAST, DAST, SCA, and ASPM under one
umbrella, reducing overlap and streamlining operations.

G Responding to regulatory and compliance pressure

Challenge: Regulations like the SEC’s cybersecurity disclosure rules and SBOM
mandates are raising the bar on software assurance.

OpenText response:

* The platform provides built-in support for SBOM generation, regulatory
compliance mappings (e.g., GDPR, CCPA), and auditable workflows.

« FedRAMP-authorized SaaS and Iron Bank-compliant on-premises options
support public sector and regulated industry needs.

OpenText \ State of application security: Trends, challenges, and upcoming threats 22/24

o Elevating detection accuracy and reducing false
positives

Challenge: False positives reduce trust in security tools and slow developer
adoption.

OpenText response:

* Proprietary Al/ML auditing (e.g., SAST Aviator, Audit Assistant) dramatically
cuts review overhead, with human-grade classification accuracy.

« Additional capabilities like scan policy tuning, filtersets, and rule
customization further reduce noise.

e Preparing for the post-quantum era

Challenge: With NIST’s post-quantum cryptography (PQC) standards
emerging, organizations must assess and future-proof systems against
quantum-enabled cryptographic breaks—without disrupting current
operations.

OpenText response:

« Detection rules for weak or deprecated encryption algorithms and insecure
key management practices are continually updated through Software
Security Research (SSR) to track evolving PQC recommendations from NIST
and ETSI.

« Integration with CI/CD pipelines automates cryptographic inventory—
identifying libraries, APIs, and code paths requiring PQC-ready migration.

« Along with SBOM capabilities, security teams get a roadmap for phased crypto-
agility, ensuring compliance readiness and reduced long-term exposure.

e Defending against Al-powered and Al-targeted attacks

Challenge: Al is being weaponized both as an attack tool and an attack target,
enabling automated vulnerability discovery, adaptive phishing, and malicious
model manipulation.

OpenText response:

« AI/ML detection capabilities identify insecure Al model integrations, prompt
injection vulnerabilities, and unsafe handling of LLM output—covering
frameworks such as OpenAl, AutoGen, and LangChain.

« DAST solutions can simulate adversarial APl interactions to test resilience
against Al-driven fuzzing and model exploitation attempts.

» Application Security Aviator, powered by LLMs accelerates triage and flags
code patterns susceptible to Al-specific exploits.

« Continuous SSR content updates ensure that Al-related vulnerability
categories are tracked and expanded as new research emerges.

OpenText \ State of application security: Trends, challenges, and upcoming threats 23/24

Ready to go deeper?
Download the extended
companion guide, How
OpenText addresses
current and future
application security
challenges, for
implementation detail you
can put to work.

Copyright © 2025 Open Text ¢ 10.25 | 262-000204-002

@ Securing smart contracts and blockchain applications

Challenge: As blockchain adoption expands, smart contracts have become
high-value targets due to their immutability and direct control over assets.
Vulnerabilities can lead to irreversible financial and reputational loss.

OpenText response:

» Supports static and dynamic analysis for Solidity and other smart contract
languages, detecting common vulnerabilities such as reentrancy, integer
overflows/underflows, unchecked calls, and access control flaws.

e Rulesets draw from both OWASP and blockchain-specific security
research, providing coverage for decentralized finance (DeFi) risks and NFT
marketplace code.

 Integration with OpenText SSC enables centralized policy enforcement for
blockchain projects alongside.

Summary

OpenText Application Security offers a future-ready, deeply integrated, and
developer-centric platform designed to meet the evolving challenges of modern
software development. Whether securing GenAl applications, defending APIs,
enabling DevSecOps at scale, or ensuring regulatory compliance, OpenText
empowers security and engineering teams to build resilient, secure-by-design
software—without compromising velocity or innovation.

€3 opentext”

https://www.opentext.com/en/media/guide/how-opentext-addresses-current-and-future-application-security-challenges-use-case-guide-en.pdf
https://www.opentext.com/en/media/guide/how-opentext-addresses-current-and-future-application-security-challenges-use-case-guide-en.pdf
https://www.opentext.com/en/media/guide/how-opentext-addresses-current-and-future-application-security-challenges-use-case-guide-en.pdf
https://www.opentext.com/en/media/guide/how-opentext-addresses-current-and-future-application-security-challenges-use-case-guide-en.pdf
https://www.opentext.com/en/media/guide/how-opentext-addresses-current-and-future-application-security-challenges-use-case-guide-en.pdf

	Key trends
	Core challenges and threat landscape
	The evolving role of SAST, DAST, and
SCA technologies
	Emerging areas in application security
	Forecast: Looking ahead to 2026 and beyond
	How OpenText addresses current and future
application security challenges
	Summary

Accessibility Report

		Filename:

		opentext-state-of-application-security-trends-challenges-and-upcoming-threats-wp-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
