
GUIDE

Secure by design: Deliver software
faster, more safely, and more
securely with DevSecOps
Proactively fortify your software against threats

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 2/15

Contents Introduction� 3

What is DevSecOps� 4

Build a DevSecOps culture� 5

Integrate security into the development pipeline� 7

Tools and technologies for DevSecOps� 10

Best practices and future trends� 12

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 3/15

Introduction

What if your next software release made headlines—for all the
wrong reasons? In the high-stakes world of software delivery,
the race to keep up with business demands can feel relentless.
But when speed overshadows security, the consequences can
be catastrophic. DevSecOps changes the game by embedding
security into every stage of your Software Delivery Lifecycle
(SDLC), empowering your team to deliver fast, flawless, and
secure software. Let your developers focus on innovations
that thrill customers and outpace the competition—without
compromising security.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 4/15

What is DevSecOps
IT organizers are faced with increasing pressure to deliver secure software at the
speed of business. Unfortunately, rushed software delivery increases the risks
of security breaches. It doesn’t help that Development, Security, and Operations
all operate in silos. Disconnected processes and tools hinder collaboration, limit
visibility, and increase the risk of errors while manual efforts are error prone,
disconnected, and delay software delivery.

Security is a major concern for software delivery. It shouldn’t be an afterthought in
the SDLC. Gone are the days when security testing can be done at the end of the
development cycle. We are seeing security shift left in DevOps, security testing is
being conducted sooner in software and application development.

DevSecOps is a philosophy and practice that recognizes security is an integral
part of the DevOps process. It aims to make security a shared responsibility
throughout the entire lifecycle of software development, from planning and coding
to deployment and maintenance.

Security is a team sport, integrating it into every stage lets you identify and
address vulnerabilities early, ensuring rapid, secure deployments. With DevSecOps,
organizations can deliver secure, high-quality software quickly and more efficiently,
while reducing costs, managing risks, and fostering a culture of collaboration and
continuous improvement.

Key aspects of DevSecOps:
•	Security integration: Traditionally, security checks were conducted at the end of
the software development lifecycle, often leading to delays if issues were found.
DevSecOps shifts security “left,” meaning security is integrated into every stage of
the development process.

•	Automation: DevSecOps relies heavily on automation to ensure security measures
are consistently applied across all phases. This includes automated security testing,
continuous monitoring, and automated compliance checks, enabling teams to detect
and fix vulnerabilities faster.

•	Collaboration: DevSecOps encourages close collaboration between development,
security, and operations teams. By working together, these teams can ensure that
security is not an afterthought but a fundamental part of the software development
process.

•	Continuous monitoring and improvement: Security in a DevSecOps environment is
continuous. With ongoing monitoring of systems for vulnerabilities and threats, and
continuously improving security practices as new risks emerge, you can be proactive
and not reactive to security risks.

•	Cultural shift: DevSecOps represents a cultural shift within organizations, promoting
a mindset where everyone is responsible for security, not just the security team. This
requires training and awareness for all team members to understand security best
practices.

DevSecOps is the new standard, companies who adopt early will see a competitive
edge against those who adopt late or miss the boat entirely.

“It is not the strongest of the species that survive, nor the
most intelligent, but the one most responsive to change.”
Charles Darwin

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 5/15

Build a DevSecOps culture
Building a DevSecOps culture requires commitment, collaboration, and continuous
improvement. By embedding security into every stage of the development lifecycle,
automating security processes, and fostering a security-first mindset, organizations
can ensure that their software is delivered quickly and securely. This cultural shift
ultimately leads to more resilient systems and a stronger overall security posture,
allowing you to release your software faster.

To foster a DevSecOps culture, focus on the following areas:

�Embed security from the start
•	 �Shift security left: Integrate security early in the development process,
during planning and design phases. This approach prevents security from
becoming a bottleneck later in the cycle.

•	 �Threat modeling: Conduct threat modeling sessions early to identify
potential vulnerabilities and design secure architectures.

�Promote collaboration across teams
•	 �Break down silos: Encourage collaboration between development,
security, and operations teams. Establish regular communication, joint
planning sessions, and shared goals.

•	 �Cross-functional teams: Create teams that include members from
development, security, and operations to share the responsibility. This
integration helps ensure that security considerations are part of every
decision.

�Postmortem reviews and feedback loops
•	 �Continuous integration/Continuous deployment (CI/CD): Incorporate
security checks into the CI/CD pipeline. Automate tasks like static code
analysis, vulnerability scanning, and compliance checks to ensure security
is continuous and consistent.

•	 �Infrastructure as code (IaC): Automate the provisioning and management
of infrastructure with security as a core consideration. Use IaC tools to
enforce security policies and configurations.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 6/15

By emphasizing security and building a DevSecOps culture, you will unlock
benefits that can transform software delivery and drive your business forward.
Key benefits include:

�Faster time to market: By integrating security early and continuously,
issues are caught and resolved sooner, reducing delays and enabling
faster deployment of secure applications without compromising quality.

�Improved security posture: Continuous monitoring and automated
security checks improve the overall security of the software, reducing the
risk of breaches and vulnerabilities.

�Cost efficiency: Addressing security issues earlier in the development
process is often less costly than fixing them after deployment.

�Compliance: DevSecOps helps organizations meet regulatory
requirements more effectively by embedding compliance checks into
the development process.

�Increased collaboration: Streamlined CI/CD pipelines with integrated
security testing provide greater visibility and insights so teams can
quickly address problems, automate decisions, and better prevent
vulnerabilities.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 7/15

Integrate security into the development pipeline
This is where the rubber meets the road. Integrating security into your CI/CD pipeline
is crucial to successful DevSecOps. Bringing security alongside the key stages of the
pipeline - code, build, test, deploy, and monitor – ensures your software or applications
will be secure by design.

•	Code: Secure coding practices, code reviews, and static code analysis.

•	Build: Automating security checks during the build process.

•	Test: Integrating dynamic application security testing (DAST) and software
composition analysis (SCA).

•	Deploy: Secure configurations, container security, and IaC.

•	Monitor: Continuous security monitoring, logging, and incident response.

Integration can look different for every company and their unique pipeline, but the
core concepts apply to all: Sec

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 8/15

�Understand DevSecOps principles
Before diving into integration, it’s important to grasp the core principles of
DevSecOps:

•	Security as code: Embed security practices into code and automation.

•	Shift left: Address security issues early in the development lifecycle.

•	Automation: Use automated tools to identify and resolve security
vulnerabilities.

•	Continuous monitoring: Keep security continuously integrated and
monitored throughout the lifecycle.

�Assess your current CI/CD pipeline
Evaluate your CI/CD pipeline to understand its architecture and identify points
where security can be integrated. Key components to assess include:

•	Source code repository: Where your code is stored and versioned.

•	Build system: How your code is compiled or packaged.

•	Testing frameworks: How your code is tested for functionality and
quality.

•	Deployment: How your code is deployed to different environments.

�Integrate security into your development process
•	Security training: Provide security training for your development team
to ensure they understand secure coding practices and are aware of
common vulnerabilities.

•	Static application security testing (SAST): Implement SAST tools in the
CI pipeline to analyze source code for vulnerabilities before it’s built.
Integrate SAST tools into your source code repository or build process.

•	SCA: Use SCA tools to identify vulnerabilities in third-party libraries and
dependencies. These tools should be integrated into the build process
to scan for issues in your dependencies.

�Enhance your CI/CD pipeline with security automation
•	 Integrate security tools:

•	Static analysis tools: For code analysis during the build process.

•	Dynamic analysis tools: For analyzing running applications to
identify vulnerabilities.

•	Dependency scanners: For identifying vulnerabilities in third-party
components.

•	Automate security testing: Configure your CI/CD pipeline to
automatically run security tests during every build. Ensure these tests
include:

•	Unit tests: Test individual components for vulnerabilities.

•	 Integration tests: Test interactions between components for
security issues.

•	End-to-end tests: Test the entire application for security flaws.

•	Use IaC security: If you’re using IaC tools like Terraform or Ansible,
integrate IaC security scanning tools to check for misconfigurations and
vulnerabilities in your infrastructure code.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 9/15

�Implement continuous security monitoring
•	Security information and event management (SIEM): Implement SIEM
tools to monitor and analyze security events and logs in real time.

•	Vulnerability management: Continuously scan your deployed
environments for vulnerabilities and apply patches or updates as
necessary.

•	 Incident response: Develop and integrate an incident response plan into
your pipeline to address security issues promptly.

�Review and improve
•	Regular audits: Periodically review your DevSecOps practices and CI/
CD pipeline to ensure they are effective and up to date.

•	Feedback loops: Create feedback loops between development,
security, and operations teams to address issues and improve security
practices continually.

•	Metrics and reporting: Track metrics related to security incidents,
vulnerabilities found, and response times. Use these metrics to drive
improvements in your pipeline and practices.

�Foster a security culture
•	Collaboration: Encourage collaboration between developers, security
professionals, and operations teams to build a culture where security is
a shared responsibility.

•	Continuous learning: Promote continuous learning about new security
threats and best practices among your team members.

•	Documentation: Maintain thorough documentation of security
practices, tools, and configurations for reference and training purposes.

Integrating security into your DevOps pipeline is crucial to DevSecOps, but so is using
the right tools and technologies to get the job done. Selecting the right tools and
consolidating your existing solutions will help streamline your end-to-end DevSecOps
environment and set your teams up for success.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 10/15

Tools and technologies for DevSecOps
We know what you’re thinking, “Great, another tool to add to our DevOps toolchain.”
But that doesn’t have to be the case. DevSecOps should streamline and consolidate
your existing toolchain. Leveraging a unified platform for real-time communication,
compliance and governance, shared visibility, and streamlined workflows empowers
your teams to build secure software faster.

Categories of tools and technologies commonly used in DevSecOps:

Development and Deployment Support
•	Version control systems (VCS)

•	Continuous integration/Continuous deployment (CI/CD) tools

Application Security Testing
•	Static application security testing (SAST)

•	Dynamic application security testing (DAST)

•	 Software composition analysis (SCA)

Container security
•	 Infrastructure as code (IaC) security

•	 Runtime security and monitoring

•	 Identity and access management (IAM)

•	Secrets management

Governance and Compliance
•	Compliance and policy management

•	 Incident response and forensics

Threat Mitigation and Response
•	Security information and event management (SIEM)

•	Threat modeling tools

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 11/15

Selecting the right DevSecOps platform or tool is crucial for effectively integrating
security into your development and operations processes. Key criteria to consider
when choosing your holistic DevSecOps solution include:

Integration with existing toolchain
•	Compatibility: Ensure the tool integrates seamlessly with your existing CI/CD
pipeline, version control systems, and other DevOps tools.

•	APIs and plugins: Look for tools that offer robust APIs and a wide range of
plugins to facilitate easy integration with your current workflows.

Automation capabilities
•	Automated testing: The tool should support automated security testing (e.g., static
code analysis, dynamic analysis) that can be triggered as part of the CI/CD pipeline.

•	Policy enforcement: It should enable the automation of security policies and
compliance checks, ensuring that security standards are consistently applied.

Scalability and performance
•	Handling scale: The tool should be able to handle the scale of your projects,
whether you’re deploying to a small number of servers or thousands of containers.

•	Performance impact: Evaluate the tool’s performance impact on your
development process to ensure it doesn’t slow down your CI/CD pipeline.

Comprehensive security coverage
•	Wide security scope: The tool should cover a broad range of security concerns,
including code vulnerabilities, misconfigurations, container security, and IaC security.

•	Threat detection: It should offer advanced threat detection and real-time
monitoring capabilities to identify potential risks as they emerge.

Customizability
•	Flexible configuration: The tool should allow for customization to fit your
organization’s specific security policies and development workflows.

•	Rule customization: It should provide the ability to define and customize security
rules and thresholds based on your unique requirements.

Real-time reporting and alerts
•	 Insightful dashboards: Look for tools that offer real-time reporting, dashboards,
and alerts to provide visibility into security issues across the development
lifecycle.

•	Actionable insights: The tool should not only identify issues but also offer
actionable recommendations for remediation.

Compliance support
•	Regulatory requirements: The tool should help you maintain compliance with
relevant industry standards and regulations (e.g., GDPR, HIPAA, PCI-DSS).

•	Audit trails: Ensure the tool provides comprehensive audit logs and reports for
compliance purposes.

Future-proofing
•	Regular updates: The tool should receive regular updates to address new
security threats and vulnerabilities.

•	Roadmap and innovation: Consider the vendor’s roadmap and commitment to
innovation to ensure the tool will evolve alongside your needs.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 12/15

OpenText solutions
Leading enterprises trust OpenText’s AI-powered DevSecOps solution to release
secure, high-quality software faster and more frequently, allowing them to respond to
market changes quickly, stay ahead of the competition, and eliminate the stress and
anxiety of software releases.

OpenText™ Core Software Delivery Platform is the industry’s most comprehensive
AI-powered platform for securing and accelerating software delivery. It seamlessly
integrates security into every stage of your development lifecycle, from code creation
to production, enabling continuous delivery without sacrificing quality or security.
Seamless integration with OpenText™ Fortify™ security solution provides tools for
static code analysis, detecting and fixing vulnerabilities before deployment.

End-to-end DevSecOps is more attainable than you think. With OpenText you can
streamline your SDLC, integrate security at every stage, and maximize your ROI to
achieve successful business outcomes.

Best practices and future trends

AI and automation
Humans are error prone. AI and automation remove human error from the equation and
accelerate processes to help teams deliver software at the speed of business.

AI and machine learning have significantly enhanced security automation by providing
faster threat detection, improving response times, and enabling proactive defense
strategies. These technologies help reduce manual workloads for security teams,
improve the accuracy of threat detection, and make organizations more resilient to
evolving cyber threats.

Harness AI to:

•	 Transform data into actionable insights to propel smarter decision-making.

•	 Predict and prevent security threats.

•	Automate compliance checks to ensure regulations are always met.

•	Optimize workflows with data-driven precision.

With AI in the driver’s seat, DevSecOps revolutionizes enterprise security, delivering
faster, safer, and smarter software solutions. AI adds immense value and delayed
adoption can mean the difference between beating your competitors and becoming
the next Blockbuster Video.

Continuous improvement
Continuous improvement is another key DevSecOps principle—analyzing data and
adjusting to improve the efficiency, quality, and security of your software. To analyze
data effectively, we must know what measurements and metrics to track. Measuring
the success of DevSecOps involves evaluating how effectively security is integrated
into the development process and how well it aligns with broader business goals.

DORA (DevOps Research and Assessment) metrics provide a data-driven approach
to measure and improve software delivery performance. They help organizations
understand their DevOps maturity and focus on continuous improvement in terms of
speed (deployment frequency and lead time) and stability (mean time to restore and
change failure rate).

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 13/15

There are four DORA metrics to consider, along with security metrics that need to be
monitored to gauge the success and effectiveness of DevSecOps:

•	Deployment frequency (DF): How often an organization successfully deploys code
to production.

High DF indicates that the team can release new features, updates, and fixes quickly
and continuously. It reflects the team’s agility in delivering value to customers. The
goal is to increase DF by streamlining processes and reducing bottlenecks in the CI/
CD pipeline.

•	High performers: Deploy multiple times per day.

•	Low performers: Deploy once a month or less.

•	Lead time for changes (LT): The amount of time it takes for a commit to go from
code to production.

Specifically, this tracks the time from when a change is made (commit) to when it is
deployed to production. A shorter lead time for changes reflects how quickly a team
can deliver new features or resolve issues. It indicates a smooth, efficient development
and deployment process. The goal here is to minimize lead time by optimizing code
review, testing, and deployment processes.

•	High performers: Have lead times that are less than a day (code to deploy).

•	Low performers: May have lead times of several weeks or months.

•	Mean time to restore (MTTR): The average time it takes to recover from a failure in
production (e.g., an outage, service disruption, or critical bug).

A lower MTTR indicates that teams can quickly diagnose and fix issues, reducing
downtime and minimizing the impact on users. This reflects the team’s ability to
respond to incidents effectively and maintain system reliability. The goal is to reduce
MTTR by improving monitoring, incident response, and troubleshooting processes.

•	High performers: Restore service in under an hour.

•	Low performers: May take days or even weeks to restore service after an incident.

•	Change failure rate (CFR): The percentage of changes or deployments that lead to a
failure in production, such as service outages, degraded performance, or rollback.

A lower CFR suggests that the team is delivering high-quality code with fewer issues.
It also indicates that testing and validation processes are effective in catching
potential problems before deployment. Teams should work to minimize the CFR by
improving code quality, testing, and deployment practices.

•	High performers: Have a CFR between 0-15 percent.

•	Low performers: May have failure rates above 40 percent.

OpenText | Secure by design: Deliver software faster, more safely, and more securely with DevSecOps 14/15

•	Vulnerability detection and remediation metrics

•	Mean time to detection (MTTD): Measures the average time it takes to identify
security vulnerabilities after they are introduced. A lower MTTD indicates better
proactive security measures.

•	Mean time to remediation (MTTR): Tracks the average time taken to fix identified
vulnerabilities. A shorter MTTR reflects more efficient and responsive security
processes.

•	Reduction in vulnerabilities: Monitor the number of vulnerabilities detected over
time. A decreasing trend suggests that the DevSecOps practices are improving
code quality and security.

•	Security testing coverage metrics

•	Test coverage: Measure the percentage of code or applications that
undergo security testing (e.g., SAST, DAST). Higher coverage indicates more
comprehensive security practices.

•	False positive rate: Evaluate the accuracy of automated security tools by tracking
the number of false positives. Lowering false positives improves developer
productivity and confidence in security tools.

•	 Integration and automation metrics

•	Automated security tests: Assess the percentage of security tests that are
automated within the CI/CD pipeline. Increased automation reduces human error
and speeds up the detection of vulnerabilities.

•	Rollback frequency: Measure how often deployments are rolled back due to
security issues. Fewer rollbacks indicate that security is effectively integrated
into the development process.

•	Compliance and audit readiness metrics

•	Compliance audit results: Review the results of compliance audits to determine
how well the organization is adhering to regulatory requirements. Fewer non-
compliance issues indicate stronger DevSecOps practices.

•	Time to achieve compliance: Track the time required to implement compliance-
related changes. A reduction in this time suggests that compliance is being
seamlessly integrated into the DevSecOps process.

Success in DevSecOps is multifaceted—encompassing technical, operational, and
cultural aspects. Regularly measuring these metrics and adjusting strategies based
on the results will help ensure that DevSecOps practices are effectively improving
security, speeding up development, and delivering business value. Continuous
evolution ensures you are staying ahead of security threats in a constantly evolving
DevOps world.

Copyright © 2025 Open Text • 02.25 | 264-000048-001

Elevate your DevSecOps strategy
To stay competitive, rapid innovation is essential. But don’t let speed compromise
security. DevSecOps empowers you to deliver smarter software faster and more
safely, ensuring you meet customer expectations without unnecessary risks.

By implementing DevSecOps, you can:

• Accelerate delivery: Release software faster and more frequently.

• Enhance security: Reduce vulnerabilities and protect your business.

• Optimize performance: Improve efficiency and collaboration across teams.

• Drive continuous improvement: Adapt to evolving threats and maintain a strong
security posture.

Take the next step
Ready to unlock the full potential of DevSecOps? Learn more about how OpenText
Core Software Delivery Platform can help you achieve your software delivery goals.
Explore the platform and start your journey today.

https://www.opentext.com/products/core-software-delivery-platform

	Introduction
	What is DevSecOps
	Build a DevSecOps culture
	Integrate security into the development pipeline
	Tools and technologies for DevSecOps
	Best practices and future trends

Accessibility Report

		Filename:

		secure-by-design-with-devops-guide-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
