
Top Reasons

5 Reasons Why SAST + DAST
with Fortify Makes Sense
The combination of static (SAST) and dynamic (DAST) application security testing
methodologies provides a more comprehensive view of an application’s risk
posture. Here are 5 reasons why SAST + DAST with Fortify makes sense.

1. A unified taxonomy across testing
methods enables a complete view
of vulnerabilities.

2. Consistent remediation guidance
enables collaboration and remediation

3. Powerful prioritization reduces
the noise

4. Layered defense provides a safeguard

5. Unified vulnerability management
creates feedback loops

The combination of static (SAST) and dynamic (DAST) application security testing methodologies
provides a more comprehensive view of an application’s risk posture. Static analysis tools give
thorough feedback early in the SDLC, while dynamic analysis tools can give security teams a
quick win by immediately discovering exploitable vulnerabilities in either production or pre-
production environments. Testing in both ways yields the most complete view of the risk posed
by weaknesses and vulnerabilities within the application.

1. A unified taxonomy across testing methods enables a complete view of vulnerabilities.
The Fortify Software Security Research (SSR) by OpenText™ group is a team of experts
in the application security industry. This team writes the rules which drive our static,
dynamic, and runtime products. When researching new vulnerabilities, the team works
together to identify the best and most efficient modality for detection. By leveraging
a unified taxonomy across all three testing methods, Fortify can detect a weakness in
source code with Fortify Static Code Analyzer (SCA) by OpenText™, then identify that
same finding using dynamic analysis with Fortify WebInspect by OpenText™ in running
environments where the weakness becomes a real vulnerability. Where static and
dynamic can both detect a vulnerability, a rule is provided for each technology while
maintaining a focus on accuracy and speed.

Customer Value
Static and Dynamic application security testing are complementary technologies in
their ability to identify vulnerabilities across the entire SDLC, from development, to QA,
to production. When these two technologies are unified across a common taxonomy,
they augment one another to deliver a comprehensive solution. Customers see a more
complete view of the vulnerabilities that threaten their organizations.

Real-World Example
Consider a basic weak SSL cipher vulnerability. While static and dynamic testing can
both detect this weakness, the finding is heavily tied to the application’s implementation
in production. Static testing modalities will commonly return limited results for instances
where SSL is configured from within the application. However, dynamic testing will
provide a view of the web server configuration for instances where SSL is terminated
outside of the application. By employing tools that leverage a shared taxonomy,
Fortify is able to provide an extremely accurate analysis of the vulnerability’s real
security risk.

https://www.microfocus.com/en-us/what-is/sast
https://www.microfocus.com/en-us/what-is/dast

5 Reasons Why SAST + DAST with Fortify Makes Sense

2

2. Consistent remediation guidance enables collaboration and remediation. By leveraging a unified taxonomy across both static and dynamic
testing methods, developers are presented with results that share recommendation advice and security mappings.

Customer Value
By using software that uses developer-friendly language, developers won’t need to spend as much time training to understand the reports.
This allows them to spend less time researching vulnerabilities and more time remediating them.

Real-World Example
With DevOps methodologies becoming more and more prevalent, application security is becoming a team sport. Development, operations,
and security teams require that the tools leveraged at various stages of the SDLC provide consistent vulnerability detail. By leveraging Fortify
static and dynamic testing technologies, underpinned by a common vulnerability taxonomy, teams can collaborate on vulnerabilities in a clear
and concise manner.

3. Powerful prioritization reduces the noise. All vulnerabilities are not created equal. A weakness which is identified via source code analysis
may be mitigated outside of code, leading to a lower net risk score. By layering dynamic analysis on top of static analysis, customers gain a
valuable additional risk metric which allows them to see a more complete real-world risk picture.

Customer Value
It is not realistic to remediate all findings. Modern application security professionals are faced with difficult decisions when deciding which
issues to fix, and which to defer. By leveraging a unified taxonomy across both static and dynamic testing, customers can gain an additional
metric that allows them to choose which findings should be remediated first. Overall security posture is enhanced, and developers are able
to use their time more efficiently by focusing on the most important findings first.

Real-World Example
Modern application security programs use a wide range of technologies and practices to mitigate risk. While static analysis does a great job
of identifying a deep and broad set of vulnerability categories, it cannot account for production application context. An organization protecting
XSS via a WAF may rightfully place a higher priority on remediating a non-WAF-protected vulnerability, like unsafe deserialization.

4. Layered defense provides a safeguard. Static analysis provides excellent coverage, but it cannot be run against production environments
where configurations and deployment options may have an enormous impact on the applications overall risk posture. Dynamic analysis allows
for identifying issues later in the SDLC and into production where they pose the greatest risk.

Customer Value
By leveraging static analysis to identify vulnerabilities early in the SDLC and dynamic analysis to identify externally facing vulnerabilities later
in the SDLC and into production, security teams can implement a layered approach which delivers greater security, because DAST acts as a
safety net for vulnerabilities that aren’t identified by SAST.

Real-World Example
It is true that DevOps cycles drive shorter release cycles that provide more opportunities to identify and remediate security defects,
but the constantly accelerating churn of more releases also introduces more opportunities for mistakes. Dynamic testing can efficiently
identify vulnerabilities that slip through the cracks due to developer mistakes, deployment errors, or environmental nuances.

5. Unified vulnerability management creates feedback loops. Security and Development
teams need to consider a wide range of factors when identifying and remediating risk.
The Fortify by OpenText™ tools eliminate one of those factors by providing these teams with
a unified vulnerability management platform that allows them to easily analyze findings.

Customer Value
Teams are being overwhelmed by security information from point solutions which focus
on their individual niches. A unified application security vulnerability management
platform is not only critical in terms of the simplified prioritization and triage workflows
that it introduces, but also in terms of the patterns that can be gleaned from the data.

Real-World Example
The most profound benefit to leveraging a unified vulnerability management platform
centers around the data. A very basic example of this value can be seen in trending of
vulnerability patterns. While it is important to identify vulnerabilities early in the SDLC
using technologies like static analysis, it is critically important to create feedback loops
that can identify when those findings surface in running environments via a DAST scan.
An organization that identifies findings like XSS early in the SDLC and continues to
detect those issues in production, can focus their training and development resources
on addressing systemic problems.

Learn more at
www.microfocus.com/en-us/cyberres/application-security

About Fortify Static Code Analyzer
Fortify Static Code Analyzer (SCA) pinpoints the root cause of security vulnerabilities in the source
code, prioritizes the most serious issues, and provides detailed guidance on how to fix them so
developers can resolve issues in less time with centralized software security management.

About Fortify WebInspect
Fortify WebInspect is a dynamic application security testing (DAST) tool that identifies application
vulnerabilities in deployed web applications and services.

OpenTextCybersecurityprovidescomprehensivesecuritysolutionsforcompaniesandpartnersofallsizes.Fromprevention,detectionandresponsetorecovery,investigationandcompliance,
our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio. Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk.

769-000002-003 | O | 11/23 | © 2023 Open Text

Connect with Us
www.opentext.com

https://www.microfocus.com/en-us/cyberres/application-security
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.microfocus.com/en-us/cyberres/application-security/webinspect
https://www.opentext.com
https://www.linkedin.com/showcase/9022/
https://twitter.com/OpenTextSec

Accessibility Report

		Filename:

		opentext-tr-5-reasons-why-sast-plus-dast-with-fortify-makes-sense-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 3

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Needs manual check		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

