
Product Security
Assurance Program

2/11Product Security Assurance Program

Contents
Objective	 3

Scope	 3

Sources	 3

Introduction	 3

Concept	and	design	 4

Development	 5

Testing	and	quality	assurance	 7

Testing	and	quality	assurance	 8

Maintain	and	support	 10

Partnership	and	responsibility	 11

Privacy	and	Security	Policy	 12

3/11Product Security Assurance Program

Objective
The	goals	of	the	OpenText	Product	Security	Assurance	Program	(PSAP)	are	to	
help	ensure	that	all	products,	solutions,	and	services	are	designed,	developed,	
and	maintained	with	security	in	mind,	and	to	provide	OpenText	customers	with	
the	assurance	that	their	important	assets	and	information	are	protected	at	all	
times.	This	document	provides	a	general,	public	overview	of	the	key	aspects	and	
components	of	the	PSAP	program.

Scope
The	scope	of	the	PSAP	includes	all	software	solutions	designed	and	developed	by	
OpenText	and	its	subsidiaries.	All	OpenText	employees	are	responsible	to	uphold	
and	participate	in	this	program.

Sources
The	source	of	this	overview	document	is	the	PSAP	Standard	Operating	Procedure	
(SOP).	This	SOP	is	highly	confidential	in	nature,	for	internal	OpenText	consumption	
only.	This	overview	document	represents	the	aspects	that	are	able	to	be	shared	
with	OpenText	customers	and	partners.

Introduction
OpenText	is	committed	to	the	confidentiality,	integrity,	and	availability	of	its	
customer	information.	OpenText	believes	that	the	foundation	of	a	highly	secure	
system	is	that	the	security	is	built	in	to	the	software	from	the	initial	stages	of		
its	concept,	design,	development,	deployment,	and	beyond.	In	this	respect,	the		
PSAP	attempts	to	inject	security	principles	and	ideals	into	all	stages	of	the		
product	lifecycle.

PSAP

Routine
dynamic

application
security
testing
(DAST)

Routine
static

application
security
testing
(SAST)

Respond
to customer

 reported
security
 issues

Security
documentation/

hardening
guidesIssue

management
risk

treatment

Internal
direct

vulnerability
assessments

Development

Test/QACo
nc

ep
t/d

esign

M
aintain/support Release/deplo

y

Third-party/
external

assessments

Third-party/
external

assessments

Security
advisories/

alerting

Security
patches/
updates

Secure
coding

principles
Third-party
component

tracking

Go/no-go
decision

Security
features

Security
specifications

Security
features

Monitor
third-party
component

threats/
vulnerabilities

4/11Product Security Assurance Program

Concept and design
Application security requirements, specifications, and features

With	a	goal	to	incorporate	security	at	the	earliest	possible	phase	of	the	product	
lifecycle,	OpenText	captures	and	strives	to	incorporate	specific	application	security	
requirements	during	the	concept/design	phases	of	the	product	lifecycle.

These	requirements	are	normally	derived	from	industry	standard	best	practice	
guidelines	such	as	the	OWASP	Development	Guide	and	Security	Cheat	Sheet	Series	
projects.	Some	common	application	security	requirements	injected	in	to	OpenText	
products	fall	into	the	following	high-level	categories:

•	 Identity	management

•	Authentication

•	Session	management

•	Authorization/access	control

•	Data	validation	and	representation

•	Data	protection,	handling,	and	retention

•	Cryptography

•	Error	handling	and	logging

•	Business	logic

•	Client-side	security

•	Configuration	and	deployment

•	Industry	specific	compliance	standards,	regulations,	and	privacy

OpenText	also	strives	to	give	security	related	specifications	and	features	the	same	
importance	as	functional	and	performance	related	specifications	and	features.	
OpenText	product	teams	continually	research	new	security	related	threats,	trends,	
laws,	and	regulations	to	stay	ahead	of	competitors.	To	learn	more	about	the	OpenText		
commitment	to	information	security	and	data	privacy,	read	our	Privacy	Statement.	

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.opentext.com/about/opentext-privacy-center

5/11Product Security Assurance Program

Development
Secure coding principles

The	goal	of	software	security	is	to	maintain	the	confidentiality,	integrity,	and	
availability	of	information	resources	in	order	to	enable	successful	business	
operations.	To	help	accomplish	this	goal,	OpenText	follows	secure	development	
principles	through	the	entire	product	lifecycle.	These	include:

Minimize attack surface area:	Every	feature	that	is	added	to	an	application	adds	a	
certain	amount	of	risk	to	the	overall	application.	The	aim	for	secure	development	is	
to	reduce	the	overall	risk	by	reducing	the	attack	surface	area.

Establish secure defaults:	There	are	many	ways	to	deliver	an	“out-of-the-box”	
experience	for	users.	However,	by	default,	the	experience	should	be	secure,	and	it	
should	be	up	to	the	user	to	reduce	their	security—if	they	have	permissions.

Apply least privilege:	The	principle	of	least	privilege	recommends	that	accounts	
have	the	least	amount	of	privilege	required	to	perform	their	business	processes.	
This	encompasses	user	rights	and	resource	permissions	such	as	CPU	limits,	
memory,	network,	and	file	system	permissions.

Apply defense-in-depth:	The	principle	of	defense-in-depth	suggests	that	where	
one	control	would	be	reasonable,	more	controls	that	approach	risks	in	different	
fashions	are	better.	Controls,	when	used	in	depth,	can	make	severe	vulnerabilities	
extraordinarily	difficult	to	exploit	and	thus	unlikely	to	occur.

Fail securely:	Applications	regularly	fail	to	process	transactions	for	many	reasons.	
How	they	fail	can	determine	if	an	application	is	secure	or	not.

Don’t trust third-party services/data:	Many	applications	utilize	the	processing	
capabilities	of	third-party	partners,	who	may	employ	different	security	policies	
and	postures.	It	is	unlikely	that	these	third	parties	can	be	influenced	or	controlled,	
whether	they	are	end	users,	external	APIs,	or	data	sources.	Therefore,	implicit	
trust	of	externally	run	systems	is	not	recommended.	All	external	systems	should	be	
treated	in	a	similar	fashion.

Separation of duties:	A	key	fraud	control	is	separation	of	duties.	For	example,	
someone	who	requests	a	computer	cannot	also	sign	for	it,	nor	should	they	directly	
receive	the	computer.	This	prevents	the	user	from	requesting	many	computers	and	
claiming	they	never	arrived.	Certain	roles	have	different	levels	of	trust	than	normal	
users.	In	particular,	administrators	are	different	to	normal	users	in	that	they	should	
not	be	users	of	the	application.

Avoid security by obscurity:	Security	through	obscurity	is	a	weak	security	control	
and	nearly	always	fails	when	it	is	the	only	control.	This	is	not	to	say	that	keeping	
secrets	is	a	bad	idea,	it	simply	means	that	the	security	of	key	systems	should	not	be	
solely	reliant	upon	keeping	details	hidden.

Keep security simple:	Attack	surface	area	and	simplicity	go	hand	in	hand.	Certain	
software	engineering	fads	prefer	overly	complex	approaches	to	what	would	
otherwise	be	relatively	straightforward	and	simple	code.	Developers	should	avoid	
the	use	of	double	negatives	and	complex	architectures	when	a	simpler	approach	
would	be	faster	and	simpler.

Fix security issues correctly:	Once	a	security	issue	has	been	identified,	it	is	
important	to	develop	a	test	to	identify	it	and	to	understand	its	root	cause.		
When	design	patterns	are	used,	it	is	likely	that	the	security	issue	is	widespread	
amongst	all	code	bases,	so	developing	the	right	fix	without	introducing	regressions	
is	essential.

6/11Product Security Assurance Program

Training and awareness

OpenText	provides	both	mandatory	and	optional	application	security	training	to	its	
developers	and	testers.	Some	example	subjects	include:

•	Foundations	of	software	security

•	Foundations	of	Java	platform	security

•	Foundations	of	JavaScript	and	HTML5	security

•	Defensive	programming	for	JavaEE,	JavaScript,	and	HTML5

•	OWASP	top	ten	risk	prevention

•	Customized	training	for	leveraged	static	and	dynamic	application	security	
testing	tools

Secure coding standards

OpenText	follows	industry	standard	secure	development	guidelines,	such	as:

•	OWASP	Development	Guide

•	OWASP	Secure	Coding	Practices	Quick	Reference	Guide

•	OWASP	Cheat	Sheet	Series

•	CERN	Security	Checklist	for	Developers

•	Microsoft®	Guidelines	for	Writing	Secure	Code

•	SEI	CERT	Coding	Standards

Static application security testing (SAST)

All	product	teams	are	mandated	to	routinely	incorporate	SAST	activities	into	
their	development	procedures.	Both	automated	and	manual	source	code	review	
approaches	are	utilized	to	accomplish	this.	All	results	are	reviewed	and	qualified	
and	any	true	positive	findings	are	risk	treated	accordingly.	OpenText	relies	upon	
industry	standard	methods	and	tools	to	fulfill	the	SAST	requirement	of	PSAP.

Third-party component tracking

From	a	security	perspective,	OpenText	reviews	and	keeps	track	of	all	third-
party	software	libraries	and	versions	incorporated	with	or	used	by	our	products	
and	solutions.	The	goal	of	this	endeavor	is	to	prevent	vulnerable	third-party	
software	from	making	its	way	into	our	products	and	to	stay	informed	of	third-party	
components	that	are	reported	to	be	vulnerable	so	that	they	can	be	patched.

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://security.web.cern.ch/security/recommendations/en/checklist_for_coders.shtml
https://msdn.microsoft.com/en-us/library/ms182020(v=vs.100).aspx
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

7/11Product Security Assurance Program

Testing and quality assurance
Dynamic application security testing (DAST)

All	product	teams	are	mandated	to	routinely	incorporate	DAST	activities	(application	
layer	vulnerability	testing)	into	their	quality	assurance	and	regression	testing	
procedures.	Combinations	of	automated	and	manual	approaches	are	used	to	
accomplish	this.	All	results	are	reviewed	and	qualified	and	true	positive	findings	are	
risk	treated	accordingly.	OpenText	relies	upon	industry	standard	methods	and	tools	
to	fulfill	the	DAST	requirement	of	PSAP.

Direct assessments

In	addition	to	routine	SAST	and	DAST,	direct	application	security	vulnerability	
assessments	and	penetration	tests	are	regularly	conducted	against	OpenText.	
These	assessments	are	normally	conducted	by	an	internal	Security	Engineering	
team,	separate	from	the	individual	product	teams	(as	a	second	set	of	unbiased	
eyes),	but	may	also	be	conducted	by	third	parties	for	key	product	deployments.	
Customers	also	conduct	their	own	assessments	against	their	own	deployed	
environments	that	host	OpenText	products	and	solutions.	To	support	these	efforts,	
OpenText	will	participate	in	these	assessment	activities	upon	customer	request.

Direct	assessments	normally	utilize	testing	checklists	such	as	the	OWASP	Testing	
Guide	to	test	the	product	for	resiliency	against	the	OWASP	Top	10	Risks	listed	
as	follows:

Product Description

A1-Injection Injection flows, such as SQL, OS, and LDAP injection occur when untrusted data is
sent to an interpreter as part of a command or query. The attacker’s hostile data
can trick the interpreter into executing unintended commands or accessing data
without proper authorization.

A2-Broken authentication
and session management

Application functions related to authentication and session management are
often not implemented correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation flaws to assume other
users’ identities.

A3-Cross-site scripting (XSS) XSS flaws occur whenever an application takes untrusted data and sends it to
a web browser without proper validation or escaping. XSS allows attackers to
execute scripts in the victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

A4-Insecure direct
object references

A direct object reference occurs when a developer exposes a reference to an
internal implementation object, such as a file, directory, or database key. Without
access control check or other protection, attackers can manipulate these
references to access unauthorized data.

A5-Secuirty misconfiguration Good security requires having a secure configuration defined and deployed for
the application, frameworks, application server, web server, database server, and
platform. Secure settings should be defined, implemented and maintained, as
defaults are often insecure. Additionally, software should be kept up to date.

https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Top_10_2013-Top_10

8/11Product Security Assurance Program

Product Description

A6-Sensitive data exposure Many web applications do not properly protect sensitive data, such as credit
cards, taxIDs, and authentication credentials. Attackers may steal or modify such
weakly protected data to conduct credit card fraud, identity theft, or other crimes.
Sensitive data deserves extra protection such as encryption at rest or in transit, as
well as special precautions when exchanged with the browser.

A7-Misssing function level
access control

Most web applications verify function level access rights before making that
functionality visible in the UI. However, applications need to preform the same
access control checks on the server when each function is accessed. If requests
are not verified, attackers will be able to forge requests in order to access
functionality without proper authorization.

A8-Cross-Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP
request, including the victim’s session cookie and any other automatically
included authentication information, to a vulnerable web application. This allows
the attacker to force the victim’s browser to generate requests the vulnerable
application thinks are legitimate requests from the victim.

A9-Using components with
known vulnerabilities

Components, such as libraries, frameworks, and other software modules, almost
always run with full privileges. If a vulnerable component is exploited, such as
an attack can facilitate serious data loss or server takeover. Applications using
components with known vulnerabilities may undermine application defenses and
enable a range of possible attacks and impacts.

A10-Unvalidated redirects
and forwards

Web applications frequently redirect and forward users to other pages and
websites, and use untrusted data to determine the destination pages. Without
proper validation, attackers can redirect victims to phishing or malware sites,
or us forward to access unauthorized pages.

Security documentation

OpenText	strives	to	provide	its	customers	with	as	much	supporting	material	relating	
to	secure	configuration	and	hardening	as	possible.	An	example	of	the	type	of	
documentation	made	available	is	the	“Best practices content server application
security hardening guide”	made	available	within	the	Champion Toolkit	for	each	
new	release,	posted	in	OpenText	My	Support.

Issue management and risk treatment

All	security	issues	and	vulnerability	findings	that	are	detected	from	any	source		
(e.g.,	SAST,	DAST,	direct	assessments,	and	customer	reports)	are	analyzed	for	
validity,	assigned	a	security	severity	rating,	logged	against	the	appropriate	project	
in	the	OpenText	issue	tracking	system,	prioritized,	and	risk	treated.

https://knowledge.opentext.com

9/11Product Security Assurance Program

Maintain and support
Open source and third-party component tracking

Open	source	and	third-party	components	that	are	embedded	or	incorporated		
into	OpenText	products	and	solutions	are	tracked	and	regularly	updated	to	help	
ensure	that	vulnerable	components	do	not	negatively	impact	the	security	of	
OpenText	products.

OpenText	routinely	monitors	public	vulnerabilities,	disclosure	databases,	and	other	
resources	for	new	threats	or	vulnerabilities	in	third-party	components.	If	a	threat	or	
vulnerability	is	discovered,	investigations	are	initiated	to	determine	if	any	OpenText	
products	are	affected.

If	an	OpenText	product	is	affected,	then	an	appropriate	risk	treatment	strategy		
is	implemented.

Customer support security alerting

If	a	significant	threat	affects	the	security	of	a	product,	customers	are	notified	
through	the	OpenText	security	alerting	process	through	OpenText	My	Support.	
Patches	and	mitigation	instructions	are	provided	as	soon	as	available.

Customer reported issues

OpenText	takes	customer	reported	security	issues	very	seriously.	Any	security	
related	issues	brought	to	the	attention	of	OpenText	employees	are	triaged	
immediately	and	a	resolution	is	provided	as	soon	as	reasonably	possible.	OpenText	
customers	are	encouraged	to	report	security	issues	through	their	normal	customer	
support	channels.

https://knowledge.opentext.com

10/11Product Security Assurance Program

Partnership and responsibility
Security Advocates

Every	product	has	an	assigned	individual	or	group	of	individuals	acting	as	a		
Security	Advocate	for	their	product.	Assigned	by	Product	and/or	Development	
Management,	the	Security	Advocate	role	is	conferred	upon	subject	matter	experts	
for	the	given	product.

Having	assigned	Security	Advocates	promotes	ownership	and	responsibility	for	the	
security	of	the	product	and	its	important	customer	related	assets.

Security	Advocates	are	not	responsible	for	performing	all	security	related	activities.	
Instead,	they	help	to	ensure	that	adequate	resources	and	time	are	allocated	to	
security	related	tasks,	requirements,	and	initiatives.

In	this	respect,	product	security	assurance	is	promoted	and	championed	to	all	
product	team	members.	Security	becomes	visible	to	everyone	instead	of	just	a	
single	team	within	the	organization.	This	ensures	that	everyone	is	responsible	for	
and	participates	in	the	securing	of	OpenText	products	and	solutions.

OpenText	Security	Advocates	are	responsible	for:

•	Assigning	responsibility	to	individuals	and	groups	for	security	related	tasks	on	the	
product	team

•	Promoting	the	incorporation	of	application	security	requirements	into	the	
product’s	concept	and	design	phases	by	business	owners

•	Ensuring	secure	development	principles	are	incorporated	into	the	product’s	
development	phases

•	Ensuring	static	application	security	testing	is	conducted	during	the	product’s	
development	phases

•	Ensuring	dynamic	application	security	testing	is	conducted	during	the	product’s	
QA	and	regression	testing	phases

•	Ensuring	open	source	and	third-party	component	lists	are	tracked	and	kept	up	
to	date	for	the	product	and	that	regular	monitoring	of	threats	or	vulnerabilities	in	
those	components	are	risk	treated

•	Ensuring	that	reported	security	issues,	threats,	and	vulnerabilities	relating	to	the	
product	from	any	source	are	brought	to	the	attention	of	business	owners	and		
risk	treated

•	Ensuring	all	product	related	support	documentation	is	up	to	date	with	its	security	
related	information

•	Disseminating	security	related	announcements	to	their	product	teams

11/11

Copyright © 2022 Open Text. All Rights Reserved. Trademarks owned by Open Text.
For more information, visit: https://www.opentext.com/about/copyright-information • 10.22 | 20446.EN

Security Engineering team

A	Security	Engineering	team	also	exists	at	OpenText.	This	team’s	role	is	to	champion	
security	in	all	products.	Security	Engineering	strives	to	build	long-term	relationships	
with	Security	Advocates	and	their	product	teams,	working	closely	to	support	and	
assist	the	teams	in	all	security	related	tasks	and	endeavors.

Security	Engineering’s	core	responsibilities	include:

•	Promoting	security	in	all	products	and	secure	software	development	practices

•	Acting	as	custodians	for	the	OpenText	Secure	Software	Development	Lifecycle	
Program	(i.e.,	the	PSAP)

•	Tracking	the	security	maturity	of	all	products	and	reporting	overall	risk	postures	
to	Engineering	Management

•	Regularly	liaising	with	and	supporting	Security	Advocates	and	their	product	teams

•	Providing	security	related	subject	matter	expertise,	SAST	and	DAST	support,	and	
training	to	all	product	teams	for	SAST	and	DAST	related	tools	and	activities

•	Performing	direct	application	security	vulnerability	assessments	and	penetration	
tests	as	required

•	Tracking	all	vulnerabilities,	threats,	and	customer	reported	security	issues	
holistically	and	ensuring	they	are	being	risk	treated	according	to	their		
severity	ratings

•	Working	with	OpenText	Customer	Support	and	customers	to	investigate	and	seek	
resolution	to	customer	reported	security	issues,	questions,	and	concerns

•	Working	in	cooperation	with	the	OpenText	Global	Information	Security	team	on	
various	security	related	initiatives

•	Keeping	abreast	of	new	security	related	threats	and	trends,	attack	techniques,	
tools,	and	methodologies

Privacy and Security Policy
OpenText	is	committed	to	protecting	the	personal	data	of	our	customers.		
To	read	our	policy	statement	outlining	our	principles	with	respect	to	personal		
data	collected,	processed,	and	used	via	our	website,	visit:		
https://www.opentext.com/about/privacy.

About OpenText
OpenText,	The	Information	Company,	enables	organizations	to	gain	insight	through	
market	leading	information	management	solutions,	on-premises	or	in	the	cloud.	For	
more	information	about	OpenText	(NASDAQ:	OTEX,	TSX:	OTEX)	visit:	opentext.com.

Connect with us:
•	OpenText	CEO	Mark	Barrenechea’s	blog
•	Twitter		|		LinkedIn

opentext.com/contact

https://www.opentext.com/about/privacy
http://www.opentext.com
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
http://www.linkedin.com/company/opentext
http://opentext.com/contact

	Objective
	Scope
	Sources
	Introduction
	Concept and design
	Development
	Testing and quality assurance
	Maintain and support
	Partnership and responsibility
	Privacy and Security Policy

