
Product Security
Assurance Program

2/11Product Security Assurance Program

Contents
Objective	 3

Scope	 3

Sources	 3

Introduction	 3

Concept and design	 4

Development	 5

Testing and quality assurance	 7

Testing and quality assurance	 8

Maintain and support	 10

Partnership and responsibility	 11

Privacy and Security Policy	 12

3/11Product Security Assurance Program

Objective
The goals of the OpenText Product Security Assurance Program (PSAP) are to
help ensure that all products, solutions, and services are designed, developed,
and maintained with security in mind, and to provide OpenText customers with
the assurance that their important assets and information are protected at all
times. This document provides a general, public overview of the key aspects and
components of the PSAP program.

Scope
The scope of the PSAP includes all software solutions designed and developed by
OpenText and its subsidiaries. All OpenText employees are responsible to uphold
and participate in this program.

Sources
The source of this overview document is the PSAP Standard Operating Procedure
(SOP). This SOP is highly confidential in nature, for internal OpenText consumption
only. This overview document represents the aspects that are able to be shared
with OpenText customers and partners.

Introduction
OpenText is committed to the confidentiality, integrity, and availability of its
customer information. OpenText believes that the foundation of a highly secure
system is that the security is built in to the software from the initial stages of 	
its concept, design, development, deployment, and beyond. In this respect, the 	
PSAP attempts to inject security principles and ideals into all stages of the 	
product lifecycle.

PSAP

Routine
dynamic

application
security
testing
(DAST)

Routine
static

application
security
testing
(SAST)

Respond
to customer

 reported
security
 issues

Security
documentation/

hardening
guidesIssue

management
risk

treatment

Internal
direct

vulnerability
assessments

Development

Test/QACo
nc

ep
t/d

esign

M
aintain/support Release/deplo

y

Third-party/
external

assessments

Third-party/
external

assessments

Security
advisories/

alerting

Security
patches/
updates

Secure
coding

principles
Third-party
component

tracking

Go/no-go
decision

Security
features

Security
specifications

Security
features

Monitor
third-party
component

threats/
vulnerabilities

4/11Product Security Assurance Program

Concept and design
Application security requirements, specifications, and features

With a goal to incorporate security at the earliest possible phase of the product
lifecycle, OpenText captures and strives to incorporate specific application security
requirements during the concept/design phases of the product lifecycle.

These requirements are normally derived from industry standard best practice
guidelines such as the OWASP Development Guide and Security Cheat Sheet Series
projects. Some common application security requirements injected in to OpenText
products fall into the following high-level categories:

•	 Identity management

•	Authentication

•	Session management

•	Authorization/access control

•	Data validation and representation

•	Data protection, handling, and retention

•	Cryptography

•	Error handling and logging

•	Business logic

•	Client-side security

•	Configuration and deployment

•	Industry specific compliance standards, regulations, and privacy

OpenText also strives to give security related specifications and features the same
importance as functional and performance related specifications and features.
OpenText product teams continually research new security related threats, trends,
laws, and regulations to stay ahead of competitors. To learn more about the OpenText 	
commitment to information security and data privacy, read our Privacy Statement.

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.opentext.com/about/opentext-privacy-center

5/11Product Security Assurance Program

Development
Secure coding principles

The goal of software security is to maintain the confidentiality, integrity, and
availability of information resources in order to enable successful business
operations. To help accomplish this goal, OpenText follows secure development
principles through the entire product lifecycle. These include:

Minimize attack surface area: Every feature that is added to an application adds a
certain amount of risk to the overall application. The aim for secure development is
to reduce the overall risk by reducing the attack surface area.

Establish secure defaults: There are many ways to deliver an “out-of-the-box”
experience for users. However, by default, the experience should be secure, and it
should be up to the user to reduce their security—if they have permissions.

Apply least privilege: The principle of least privilege recommends that accounts
have the least amount of privilege required to perform their business processes.
This encompasses user rights and resource permissions such as CPU limits,
memory, network, and file system permissions.

Apply defense-in-depth: The principle of defense-in-depth suggests that where
one control would be reasonable, more controls that approach risks in different
fashions are better. Controls, when used in depth, can make severe vulnerabilities
extraordinarily difficult to exploit and thus unlikely to occur.

Fail securely: Applications regularly fail to process transactions for many reasons.
How they fail can determine if an application is secure or not.

Don’t trust third-party services/data: Many applications utilize the processing
capabilities of third-party partners, who may employ different security policies
and postures. It is unlikely that these third parties can be influenced or controlled,
whether they are end users, external APIs, or data sources. Therefore, implicit
trust of externally run systems is not recommended. All external systems should be
treated in a similar fashion.

Separation of duties: A key fraud control is separation of duties. For example,
someone who requests a computer cannot also sign for it, nor should they directly
receive the computer. This prevents the user from requesting many computers and
claiming they never arrived. Certain roles have different levels of trust than normal
users. In particular, administrators are different to normal users in that they should
not be users of the application.

Avoid security by obscurity: Security through obscurity is a weak security control
and nearly always fails when it is the only control. This is not to say that keeping
secrets is a bad idea, it simply means that the security of key systems should not be
solely reliant upon keeping details hidden.

Keep security simple: Attack surface area and simplicity go hand in hand. Certain
software engineering fads prefer overly complex approaches to what would
otherwise be relatively straightforward and simple code. Developers should avoid
the use of double negatives and complex architectures when a simpler approach
would be faster and simpler.

Fix security issues correctly: Once a security issue has been identified, it is
important to develop a test to identify it and to understand its root cause. 	
When design patterns are used, it is likely that the security issue is widespread
amongst all code bases, so developing the right fix without introducing regressions
is essential.

6/11Product Security Assurance Program

Training and awareness

OpenText provides both mandatory and optional application security training to its
developers and testers. Some example subjects include:

•	Foundations of software security

•	Foundations of Java platform security

•	Foundations of JavaScript and HTML5 security

•	Defensive programming for JavaEE, JavaScript, and HTML5

•	OWASP top ten risk prevention

•	Customized training for leveraged static and dynamic application security	
testing tools

Secure coding standards

OpenText follows industry standard secure development guidelines, such as:

•	OWASP Development Guide

•	OWASP Secure Coding Practices Quick Reference Guide

•	OWASP Cheat Sheet Series

•	CERN Security Checklist for Developers

•	Microsoft® Guidelines for Writing Secure Code

•	SEI CERT Coding Standards

Static application security testing (SAST)

All product teams are mandated to routinely incorporate SAST activities into
their development procedures. Both automated and manual source code review
approaches are utilized to accomplish this. All results are reviewed and qualified
and any true positive findings are risk treated accordingly. OpenText relies upon
industry standard methods and tools to fulfill the SAST requirement of PSAP.

Third-party component tracking

From a security perspective, OpenText reviews and keeps track of all third-
party software libraries and versions incorporated with or used by our products
and solutions. The goal of this endeavor is to prevent vulnerable third-party
software from making its way into our products and to stay informed of third-party
components that are reported to be vulnerable so that they can be patched.

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://security.web.cern.ch/security/recommendations/en/checklist_for_coders.shtml
https://msdn.microsoft.com/en-us/library/ms182020(v=vs.100).aspx
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

7/11Product Security Assurance Program

Testing and quality assurance
Dynamic application security testing (DAST)

All product teams are mandated to routinely incorporate DAST activities (application
layer vulnerability testing) into their quality assurance and regression testing
procedures. Combinations of automated and manual approaches are used to
accomplish this. All results are reviewed and qualified and true positive findings are
risk treated accordingly. OpenText relies upon industry standard methods and tools
to fulfill the DAST requirement of PSAP.

Direct assessments

In addition to routine SAST and DAST, direct application security vulnerability
assessments and penetration tests are regularly conducted against OpenText.
These assessments are normally conducted by an internal Security Engineering
team, separate from the individual product teams (as a second set of unbiased
eyes), but may also be conducted by third parties for key product deployments.
Customers also conduct their own assessments against their own deployed
environments that host OpenText products and solutions. To support these efforts,
OpenText will participate in these assessment activities upon customer request.

Direct assessments normally utilize testing checklists such as the OWASP Testing
Guide to test the product for resiliency against the OWASP Top 10 Risks listed	
as follows:

Product Description

A1-Injection Injection flows, such as SQL, OS, and LDAP injection occur when untrusted data is
sent to an interpreter as part of a command or query. The attacker’s hostile data
can trick the interpreter into executing unintended commands or accessing data
without proper authorization.

A2-Broken authentication
and session management

Application functions related to authentication and session management are
often not implemented correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation flaws to assume other
users’ identities.

A3-Cross-site scripting (XSS) XSS flaws occur whenever an application takes untrusted data and sends it to
a web browser without proper validation or escaping. XSS allows attackers to
execute scripts in the victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

A4-Insecure direct
object references

A direct object reference occurs when a developer exposes a reference to an
internal implementation object, such as a file, directory, or database key. Without
access control check or other protection, attackers can manipulate these
references to access unauthorized data.

A5-Secuirty misconfiguration Good security requires having a secure configuration defined and deployed for
the application, frameworks, application server, web server, database server, and
platform. Secure settings should be defined, implemented and maintained, as
defaults are often insecure. Additionally, software should be kept up to date.

https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Top_10_2013-Top_10

8/11Product Security Assurance Program

Product Description

A6-Sensitive data exposure Many web applications do not properly protect sensitive data, such as credit
cards, taxIDs, and authentication credentials. Attackers may steal or modify such
weakly protected data to conduct credit card fraud, identity theft, or other crimes.
Sensitive data deserves extra protection such as encryption at rest or in transit, as
well as special precautions when exchanged with the browser.

A7-Misssing function level
access control

Most web applications verify function level access rights before making that
functionality visible in the UI. However, applications need to preform the same
access control checks on the server when each function is accessed. If requests
are not verified, attackers will be able to forge requests in order to access
functionality without proper authorization.

A8-Cross-Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP
request, including the victim’s session cookie and any other automatically
included authentication information, to a vulnerable web application. This allows
the attacker to force the victim’s browser to generate requests the vulnerable
application thinks are legitimate requests from the victim.

A9-Using components with
known vulnerabilities

Components, such as libraries, frameworks, and other software modules, almost
always run with full privileges. If a vulnerable component is exploited, such as
an attack can facilitate serious data loss or server takeover. Applications using
components with known vulnerabilities may undermine application defenses and
enable a range of possible attacks and impacts.

A10-Unvalidated redirects
and forwards

Web applications frequently redirect and forward users to other pages and
websites, and use untrusted data to determine the destination pages. Without
proper validation, attackers can redirect victims to phishing or malware sites,
or us forward to access unauthorized pages.

Security documentation

OpenText strives to provide its customers with as much supporting material relating
to secure configuration and hardening as possible. An example of the type of
documentation made available is the “Best practices content server application
security hardening guide” made available within the Champion Toolkit for each
new release, posted in OpenText My Support.

Issue management and risk treatment

All security issues and vulnerability findings that are detected from any source 	
(e.g., SAST, DAST, direct assessments, and customer reports) are analyzed for
validity, assigned a security severity rating, logged against the appropriate project
in the OpenText issue tracking system, prioritized, and risk treated.

https://knowledge.opentext.com

9/11Product Security Assurance Program

Maintain and support
Open source and third-party component tracking

Open source and third-party components that are embedded or incorporated 	
into OpenText products and solutions are tracked and regularly updated to help
ensure that vulnerable components do not negatively impact the security of
OpenText products.

OpenText routinely monitors public vulnerabilities, disclosure databases, and other
resources for new threats or vulnerabilities in third-party components. If a threat or
vulnerability is discovered, investigations are initiated to determine if any OpenText
products are affected.

If an OpenText product is affected, then an appropriate risk treatment strategy 	
is implemented.

Customer support security alerting

If a significant threat affects the security of a product, customers are notified
through the OpenText security alerting process through OpenText My Support.
Patches and mitigation instructions are provided as soon as available.

Customer reported issues

OpenText takes customer reported security issues very seriously. Any security
related issues brought to the attention of OpenText employees are triaged
immediately and a resolution is provided as soon as reasonably possible. OpenText
customers are encouraged to report security issues through their normal customer
support channels.

https://knowledge.opentext.com

10/11Product Security Assurance Program

Partnership and responsibility
Security Advocates

Every product has an assigned individual or group of individuals acting as a 	
Security Advocate for their product. Assigned by Product and/or Development
Management, the Security Advocate role is conferred upon subject matter experts
for the given product.

Having assigned Security Advocates promotes ownership and responsibility for the
security of the product and its important customer related assets.

Security Advocates are not responsible for performing all security related activities.
Instead, they help to ensure that adequate resources and time are allocated to
security related tasks, requirements, and initiatives.

In this respect, product security assurance is promoted and championed to all
product team members. Security becomes visible to everyone instead of just a
single team within the organization. This ensures that everyone is responsible for
and participates in the securing of OpenText products and solutions.

OpenText Security Advocates are responsible for:

•	Assigning responsibility to individuals and groups for security related tasks on the
product team

•	Promoting the incorporation of application security requirements into the
product’s concept and design phases by business owners

•	Ensuring secure development principles are incorporated into the product’s
development phases

•	Ensuring static application security testing is conducted during the product’s
development phases

•	Ensuring dynamic application security testing is conducted during the product’s
QA and regression testing phases

•	Ensuring open source and third-party component lists are tracked and kept up
to date for the product and that regular monitoring of threats or vulnerabilities in
those components are risk treated

•	Ensuring that reported security issues, threats, and vulnerabilities relating to the
product from any source are brought to the attention of business owners and 	
risk treated

•	Ensuring all product related support documentation is up to date with its security
related information

•	Disseminating security related announcements to their product teams

11/11

Copyright © 2022 Open Text. All Rights Reserved. Trademarks owned by Open Text.
For more information, visit: https://www.opentext.com/about/copyright-information • 10.22 | 20446.EN

Security Engineering team

A Security Engineering team also exists at OpenText. This team’s role is to champion
security in all products. Security Engineering strives to build long-term relationships
with Security Advocates and their product teams, working closely to support and
assist the teams in all security related tasks and endeavors.

Security Engineering’s core responsibilities include:

•	Promoting security in all products and secure software development practices

•	Acting as custodians for the OpenText Secure Software Development Lifecycle
Program (i.e., the PSAP)

•	Tracking the security maturity of all products and reporting overall risk postures
to Engineering Management

•	Regularly liaising with and supporting Security Advocates and their product teams

•	Providing security related subject matter expertise, SAST and DAST support, and
training to all product teams for SAST and DAST related tools and activities

•	Performing direct application security vulnerability assessments and penetration
tests as required

•	Tracking all vulnerabilities, threats, and customer reported security issues
holistically and ensuring they are being risk treated according to their 	
severity ratings

•	Working with OpenText Customer Support and customers to investigate and seek
resolution to customer reported security issues, questions, and concerns

•	Working in cooperation with the OpenText Global Information Security team on
various security related initiatives

•	Keeping abreast of new security related threats and trends, attack techniques,
tools, and methodologies

Privacy and Security Policy
OpenText is committed to protecting the personal data of our customers. 	
To read our policy statement outlining our principles with respect to personal 	
data collected, processed, and used via our website, visit: 	
https://www.opentext.com/about/privacy.

About OpenText
OpenText, The Information Company, enables organizations to gain insight through
market leading information management solutions, on-premises or in the cloud. For
more information about OpenText (NASDAQ: OTEX, TSX: OTEX) visit: opentext.com.

Connect with us:
•	OpenText CEO Mark Barrenechea’s blog
•	Twitter | LinkedIn

opentext.com/contact

https://www.opentext.com/about/privacy
http://www.opentext.com
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
http://www.linkedin.com/company/opentext
http://opentext.com/contact

	Objective
	Scope
	Sources
	Introduction
	Concept and design
	Development
	Testing and quality assurance
	Maintain and support
	Partnership and responsibility
	Privacy and Security Policy

