
Position Paper

Developer-Driven AppSec:
Security at the Speed of DevOps

Table of Contents
The Current Application Security Problem. . 1
These Problems Will Only Continue to Grow. . 1
Why the Traditional Application Security Practices Won’t Succeed. 2
What Is Developer-Driven AppSec?. . 2
Developer-Driven AppSec for Your Organization. . 2
Step 1: Develop with Security in Mind. . 3
Step 2: Test Early, Often, and Fast . . 3
Step 3: Leverage Integrations to Make Application Security a Natural Part

of the Lifecycle. . 6
Step 4: Automating Security as Part of the Development and Testing Processes. . . . 7
Step 5: Consider the Future. . 7
Getting Started . . 8
Why OpenText?. . 9

1

Developer-Driven AppSec: Security at the Speed of DevOps

The Current Application Security Problem
In the past 10 years, software went from being a support function of business to an innovation
center, becoming the essential competitive differentiator for most businesses in every
vertical and size. With this shift in the role of software, businesses today are dramatically
increasing the number of applications and the frequency of releases. Based on Puppet’s
2020 State of DevOps, 46% of organizations are releasing once per week or more.
Additionally, the complexity of code continues to increase as developers try to meet the
business demand by utilizing open source and commercial code in addition to their custom
code. Sonatype’s State of the Software Supply Chain report shows that on average, 80% of
an application’s code comes from open source libraries. Not only that, but their report also
showed that on average, each application contains 38 known open source vulnerabilities.
This has huge implications on security teams to find and manage those vulnerabilities.
As a consequence, some of the notable security breaches in recent years were due to
vulnerabilities in third-party code components.

With business needs in the driver’s seat, applications are proliferating via websites,
social media platforms, mobile and cloud applications. Furthermore, some applications are
driven by marketing teams and created with third-party software. These applications are
often outside the normal business processes with little or no governance.

On top of all the challenges created by increased number of applications, increasing
complexity and faster releases, regulations like GDPR and capturing customer data for
business purposes has become the norm. Having multiple instances of customer data
increases the likelihood and impact of a breach. This is especially concerning because the
majority of security breaches today are due to application vulnerabilities. According to our
Software Security Research’s 2019 Application Security Risk Report, 80% of applications
contain at least one critical or high vulnerability and 90% of security incidents are from
exploits against defects in the design or code of software.

These Problems Will Only Continue to Grow
As time to market continues to be crucial for business, organizations adopt DevOps or similar
agile meth-odologies for rapid development with increasing success. All this means that if
security does not become an essential part of the software lifecycle, organizations will be
releasing applications with more vulnerabilities at mind blowing speed.

90% of security incidents
are from exploits against
defects in the design
or code of software.

https://circleci.com/resources/state-of-devops-report-2020/
https://www.sonatype.com/campaign/wp-2020-state-of-the-software-supply-chain-report
https://www.microfocus.com/en-us/assets/security/application-security-risk-report

Developer-Driven AppSec: Security at the Speed of DevOps

2

Why the Traditional Application Security Practices
Won’t Succeed
In many organizations, application security is isolated to a specific team that gets involved
in the final stages of development and is perceived as an inhibitor of speed. These security
teams can’t keep up as development teams are staffed at an 80:1 ratio to security teams.
When security vulnerabilities are found in late stages, organizations face pressure, which
results in friction between teams, missed release deadlines or worse. Releases with known
security defects are also being pushed to production in order to meet project timelines,
in which case the business and its customers risk being exposed to attackers.

Beyond missed deadlines and team dynamics, having a reactive approach to Application
Security is costlier to organizations. According to NIST, the cost to remediate security flaws is
30x more expensive in production and 10x more in testing than if they were caught in early
stages of development. These issues and potential risk indicate that the only way to secure
applications without compromising cost is shifting security left and take a developer-driven
application security approach.

What Is Developer-Driven AppSec?
Developer-Driven AppSec is about making application security an integral part of the
software lifecycle without creating additional burden for the stakeholders. Whether it’s taking
a DevSecOps approach, or just creating a more effective security program, the need is
thinking about security from the very early stages of the lifecycle. Application security best
practices and testing should be integrated into the developer’s toolchain. When executed
the right way, this also means that you don’t need to compromise on application security in
order to achieve the faster release cycles that are being driven by the market.

Developer-Driven AppSec for Your Organization
Success with developer-driven security takes time and effort, but the biggest hurdle to
overcome is the culture change needed to include security throughout the entire software
development lifecycle. It’s important to remove the friction between security teams and
developers. Many people believe that development and security teams have competing
priorities that often become the biggest barrier to the success of an application security
program. Developers are usually resistant to their organization creating an AppSec program
for fear of being slowed down in delivering their code. This negative mindset about security
is often due to security professionals dictating rules, workflows and tools on developers
instead of creating strong partnerships, common goals, and tools that seamlessly integrate
with the development toolchain.

Application security
best practices and
testing should be
integrated into the
developer’s toolchain.

3

Developer-Driven AppSec: Security at the Speed of DevOps

Just like in DevOps, teams have to break down the silos between them, embrace
transparency and collaborate together. While that’s easier said than done, having executive
buy-in and some security key champions within the organization can help drive this initiative.
Beyond the culture change needed, here are some important steps to make your Developer-
Driven AppSec transition successful:

Step 1: Develop with Security in Mind
With the developer to security specialist ratio around 80:1 ratio, empowering developers
to take responsibility for their own code is a must. By finding and fixing security defects
during the coding process, developers can eliminate potential security vulnerabilities before
they reach testing and production, saving the organization time and money. This change
in thinking requires training developers to code with security in mind and arming them
with the right tools to get real time feedback about their code. There are plenty of options
for developer security training, but tools providing real-time security feedback about the
code (such as the Fortify Security Assistant plugin by OpenText—which acts very similar to
a security spell checker, providing real-time security insight about the code as it’s being
developed) or integrated gamified developer training such as Secure Code Warrior, make
adoption easier and accelerate training.

It’s also important for security teams to assist in enabling developers by sharing information
on known threats, providing feedback and having transparency and visibility into their
work. Having development leads trained in application security and teaming up with them
as security champions yields positive results. This way, dev leads bring in the security
perspective early on in the development lifecycle in addition to the traditional functional
and quality aspects.

Step 2: Test Early, Often, and Fast
During the software development lifecycle, there are several approaches to follow in order
to maintain the speed needed to keep up with releases today. These approaches are testing
early, often, and fast.

Test Early
Static Application Security Testing (SAST) identifies the root causes of security issues and
helps remediate the underlying security flaws starting from the early stages of development.
To maintain the speed of releases, developers need to be able to submit code quickly and
easily by having the intelligence at their fingertips. Fortify Static Code Analyzer by OpenText
leads this method because it:

•	 Identifies and eliminates vulnerabilities in source, binary, or byte code

•	 Covers languages that developers use with support for 27 languages and counting

1 in 10 open source
component downloads
contain a known
security vulnerability.

https://www.microfocus.com/en-us/what-is/sast
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Developer-Driven AppSec: Security at the Speed of DevOps

4

•	 Delivers early defect detection and remediation, which leads to lower costs of remediation.

•	 Reviews scan results in real-time with access to recommendations and line-of-code
navigation to find vulnerabilities faster and enable collaborative auditing.

•	 More of a “shift left” approach—having analysis available everywhere, including developer
IDE and CI/CD pipelines.

Fortify Security Assistant plugin by OpenText takes this one step further by giving developers
real-time insights and rec-ommendations on code vulnerabilities as the code is being
written. This not only serves as a developer’s security “spell check” for common known
vulnerabilities, but it enables them over time to stop making those mistakes to begin with.

Beyond static analysis, there is still the growing concern around known vulnerabilities within
open source components. For almost 10 years, using known vulnerable components has
been on the OWASP Top 10 list. The DevSecOps Community recently found 1 in 10 open
source component downloads contain a known security vulnerability. There has been a 71%
increase in verified or suspected breaches between 2014 and 2020, and 1 in 5 organizations
experienced at least one open source breach in the last 12 months.

While this is alarming, many organizations have been utilizing software composition analysis
to offset these risks. However, prioritizing open source findings is still a major challenge
with software composition analysis . Like with SAST findings, manually auditing findings is a
time-consuming process that increases time to remediate for developers. Based on a report
from Sonatype, organizations will spend 20 minutes on average manually researching an
open source finding and the average application contains 38 open source issues. With most
organizations having hundreds or thousands of applications, this could potentially lead to
thousands of hours spent investigating open source findings that may not have any actual
security impact on your application. Teams need to be able to focus on issues that are not
only vulnerable, but also exploitable.

Susceptibility Analysis means quickly illustrating vulnerable components that are directly
or indirectly being invoked and thus exploitable or “susceptible.” Being able to prioritize
open source issues saves time on investigation of known issues, and even more time spent
upgrading a library that has almost zero security benefit.

At OpenText, we partner with Sonatype to accomplish this. Fortify collects methods and function
signatures based on the requests that are received for Sonatype indications of known
components. As Sonatype scans various open source components, Fortify understands that
for any of those particular known vulnerabilities that have had updates, meaning that they
have been patched, Fortify generates a signature for that function or method so that we
can see that the function is actually in your own custom code and that you are utilizing that
vulnerable component of the dependency. This means developers know not just that they
have the dependency on their class path but they actually used it in a way that makes them
susceptible to this particular vulnerability.

More intelligent scanning
means DAST validation of
SAST findings, and DAST
tuning by SAST results.

https://www.microfocus.com/media/infographic/fortify_security_assistant_infographic.pdf
https://www.sonatype.com/campaign/wp-2020-state-of-the-software-supply-chain-report

5

Developer-Driven AppSec: Security at the Speed of DevOps

Test Often
Dynamic Application Security Testing (DAST) simulates attacks on a running web application
or to identify exploitable vulnerabilities. This provides a comprehensive view of application
security by focusing on what’s exploitable and covering all components (server, custom code,
open source, services). By integrating DAST tools into development, quality assurance and
production, it can offer a continuous holistic view. Fortify WebInspect by OpenText offers an
effective solution by:

•	 Quickly identifying risk in existing applications

•	 Automating dynamic application security testing of any technology, from development
through production

•	 Meet security compliance standards with pre-configured policies and reports for major
compliance regulations

•	 Validating vulnerabilities in running applications, prioritizing the most critical issues for
root-cause analysis

•	 Crawl modern frameworks and APIs

SAST and DAST truly complement each other. By layering dynamic analysis on top of static
analysis, customers gain a valuable additional risk metric which allows them to see a more
complete real-world risk picture. While it is important to identify vulnerabilities early in the
SDLC using technologies like static analysis, it is critically important to create feedback loops
that can identify when those findings surface in running environments via a DAST scan.

An organization that identifies findings like XSS early in the SDLC, and continues to
detect those issues in production, can focus their training and development resources on
addressing systemic problems.

True SAST and DAST integration means SAST and DAST tools integrate into a single
developer-centric platform with a single management console. Unified vulnerability
management creates feedback loops. A unified vulnerability management platform is not only
critical in terms of the simplified prioritization and triage workflows that it introduces, but also
in terms of the patterns that can be gleaned from the data. More intelligent scanning means
DAST validation of SAST findings, and DAST tuning by SAST results.

Test Fast
Interactive Application Security Testing (IAST) is a form of application security testing that
combines dynamic application security testing (DAST) and runtime feedback from the
tested application as the tests are being run. But even with an IAST approach, finding
vulnerabilities is only 1/3rd of the effort. The other 2/3rds of the effort can often times be
spent on false positive validation and remediation. Another counter argument for IAST is the
fact that this testing method is likely to miss true positives because of technical limitations
with this approach. As an alternative and more efficient approach, applied machine learning
algorithms and audit automation can save time and auditing effort while improving accuracy
for static analysis.

With automated static
or dynamic analysis,
you can efficiently
identify security
vulnerabilities in source
code, minimizing the
labor-intensive nature
of security assessments.

https://www.microfocus.com/en-us/what-is/dast
https://www.microfocus.com/en-us/cyberres/application-security/webinspect
https://www.microfocus.com/media/top-reasons/5-reasons-why-sast-plus-dast-with-micro-focus-fortify-makes-sense-tr.pdf

Developer-Driven AppSec: Security at the Speed of DevOps

6

Fortify Audit Assistant by OpenText is our machine learning technology. Offered both on
premise and in the cloud, Audit Assistant leverages scan result metadata to predict and
remove false positives thus reducing the time to remediate by as much as 50%. One customer
saw 8000 Java issues reduced to ~3000 based on this technology. Our recent release further
automates the process for customers by adding auto prediction at the application version
to automatically request automated predictions when new issues are added.

Fortify Audit Assistant streamlines the most time-intensive phase of security testing—
the auditing of scan results. Fortify Audit Assistant applies extensive security knowledge
and machine learning to automate the removal false positives, prioritize findings and identify
the relevant security vulnerabilities to the organization. This means that after a static scan is
initiated, validated scan results can be obtained in minutes and be pushed to development
for fixes.

Step 3: Leverage Integrations to Make
Application Security a Natural Part of the Lifecycle
Application security must seamlessly integrate into your SDLC and CI/CD pipeline for
success. By integrating into the tools your organization and developers use to develop and
test your applications, you find issues early and often and fix them as part of the development
testing cycles. Fortify has an integration ecosystem that is easy for developers to use,
leverages your investment in current tools, and reduces friction by embedding security into
your processes. Fortify application security is built into your DevOps process. DevOps speed
at enterprise scale doesn’t mean sacrificing security and putting your business at risk.

Fortify leverages Swagger throughout our APIs to provide documentation/API self-reference.
The Fortify GitHub page has several projects with examples of how to leverage our various
APIs to perform frequently requested tasks. The API reference is built into the products and
can be accessed through the web interface of the respective products.

Faster Software Deployment
With automation options for static and dynamic scans and available integrations to the most
popular development tools such as Visual Studio, Eclipse, and Jenkins, development teams
save time and reduce friction. Integrations with defect management systems such as JIRA
or BugZilla improve handling and remediating security issues and make sure they can be
handled the same way the organization handles functional issues. This efficient approach
results in faster software development and deployment that meet the business needs for speed.

https://www.microfocus.com/media/white-paper/increase_efficiency_with_automated_auditing_of_static_scans_with_fortify_wp.pdf

7

Developer-Driven AppSec: Security at the Speed of DevOps

Reduced Risks
By shifting security to the left and covering the entire software development lifecycle in an
integrated and automated way, organizations reduce their risk and associated costs because
it’s less costly to fix vulnerabilities earlier in the process. Fortify Security Assistant plugin
and automation of security scans driven by Jenkins or Azure DevOps help the development
organization adopt security testing earlier and throughout the process.

Improved Return on Investment
Fortify works with existing development tools to protect your existing investment and
allows development teams to continue using their favorite tools. With Fortify Security
Assistant plugin, for example, developers don’t need to learn a different tool to run security
scans on their code as it works from within their existing IDE. Or with static scan integrations,
security scans are run as part of the build process and developers receive the security issues
within the defect management system, without introducing any complexity to the existing
tools and processes.

Step 4: Automating Security as Part of the
Development and Testing Processes
Automating development, processes, the provisioning of servers and deploying applications
is the key to being efficient with the DevOps initiative. Automation enables organizations
to develop and release higher quality applications faster. For Developer-Driven Application
Security, automation can be utilized in the same way with security testing in order to maintain
the same quality at higher speed. Automation is about including security as part of the DevOps
toolchains. This can occur in the IDE while coding, at the commit, build, and testing phases.
This is a major emphasis of every AppSec program. By automating security tests, you can
create and run automated security tests just like you would unit tests or integration tests.

With automated static or dynamic analysis, you can efficiently identify security vulnerabilities
in source code, minimizing the labor-intensive nature of security assessments. Having an
automated analysis of code reduces not only the code review, security assessment and
testing times, but it leads to reduced costs in remediation by finding vulnerabilities earlier.

Step 5: Consider the Future
With the ongoing shift where modern development is more dynamic than ever, with increased
velocity and complexity, there is continued migration to APIs, microservices, IaC, and more.
Ensuring the security of this changing landscape will become more and more crucial in the
coming months and years. To learn more about some of these trends and things to consider
for them, check out our 2021 AppSec Trend Report.

https://www.microfocus.com/media/white-paper/application-security-top-trends-wp.pdf

Developer-Driven AppSec: Security at the Speed of DevOps

8

Getting Started
Developer-Driven Application Security, integrated throughout the entire software
development lifecycle creates measurably reduced risk and controlled processes, which
ultimately results in reduced costs, improved time to market and optimized effort. Having
a clear path to integrated and automated application security with measurable KPIs, will
increase your organization’s opportunity to succeed. Application security provides returns
that are easier to demonstrate compared to other cybersecurity investments. Demonstration
of the progress made and the return on investment will guarantee continued investment in
application security.

Here are a few important things to consider when building the roadmap for that journey.

•	 Identify your champion(s) for Application Security.

•	 Develop your strategy and main processes before implementing.

−	 Define the initial scope and key metrics, such as: Which applications and development
teams to start with

−	 Whether to use SAST, DAST, or both

−	 Which integrations to leverage

−	 Whether to use application security tools on premises, on demand or a hybrid approach

−	 What are the expected improvements in 12 months compared to the baseline.

•	 Find the right tools for your organization.

With everything, measuring your success is crucial. Proper KPIs allows your organization
to not only effectively measure their security posture, but to justify spend and continued
investment into your security program. KPIs should align with business/program goals.
However, here are a few to consider:

•	 Weighted Risk Trend—A business-based representation of risk from vetted web
application security defects over a specified time-period, or repeated iterations of
application development.

•	 Security Defect Remediation Window—The length of time from when a vetted web
application security defect is identified until it is verified closed. Can be referenced as
Mean Time to Remidiation (MTTR).

•	 Rate of Security Defect Recurrence—The rate, over time, at which previously closed web
application security defects are re-introduced into a given application, organization,
or other logical unit.

•	 Security to Quality Defect Ratio—The ratio of security defects to the total number of
software quality defects being generated (functional + performance + security).

9

Developer-Driven AppSec: Security at the Speed of DevOps

Why OpenText?
People, process and technology are the essential components of Developer-Driven
Application Security. OpenText has the experience and the resources with the technology,
people and processes (via Fortify on Demand by OpenText and professional services) to
help you every step of the way.

OpenText provides a flexible end-to-end Application Security solution with on premises,
on-demand, and hybrid models. With measurable benefits such as 30x faster time to market,
95% fewer positives, 10-15x faster scans, 10x faster remediation and 2x more vulnerabilities
found, Fortify continues to be the industry leader in AppSec tools.

Choose Fortify for:
Ease of Getting Started: You can get started in a day with Fortify on Demand.

Ease of Use & Intuitive Integration to Existing Processes: Fortify easily integrates with what
your developers use and love, making security a seamless addition to their existing tools
and processes.
	
Speed, Automation & Scale capabilities: Most Fortify scans complete in minutes and you
can get machine assisted audit results in minutes for raw scan results. Automated scans can
be initiated as part of code check-ins, commit, builds, releases or other components of the
CI/CD pipeline. Fortify customers can scale easily on premises using centralized scanning
techniques, utilizing Fortify on Demand, or taking a hybrid approach.

Accuracy and Coverage in Programming Languages: Fortify customers report more true
positives (more validated findings) and fewer false positives (less noise) compared to other
products. Fortify offers the broadest programming language coverage with 27 supported
programming languages as of May 2021.

Continued Industry Recognition: Fortify has been recognized as an application security
leader over the past 15 years, including being recognized as a leader in the Gartner Magic
Quadrant for Application Security for the 8th straight year. Fortify is trusted by the top
companies in multiple verticals around the world.

Build secure software fast using Fortify with these key features:

•	 Fortify Security Assistant plugin provides real-time-as-you-type security analysis on code.
Fix each issue with confidence knowing that only high confidence issues are flagged.

•	 GitHub Actions and GitLab CI templates allows integrating and automating Static
Application Security Testing (SAST) into your CI/CD pipeline workflows.

https://www.microfocus.com/en-us/cyberres/application-security/fortify-on-demand
https://www.microfocus.com/en-us/cyberres/application-security
https://www.microfocus.com/en-us/products/application-security-testing/free-trial

•	 Susceptibility Analysis enables developers or security professionals to check
whether someone has invoked a vulnerability in your custom code. More importantly,
they can see whether attacker-controlled input reaches the code’s function.

•	 Speed Dial in Fortify SCA gives developers more control of the depth and speed
of their static scans.

•	 Commit Scan gives developers automated, light-weight scans into their workflow—
integrating static testing into the Git commit process, providing them immediate
feedback on the code that is being checked in for GitHub, GitLab and Bitbucket.

•	 Fortify Audit Assistant minimizes auditor workload with machine learning to
identify the vulnerabilities from Fortify SCA results. This reduces the number of
issues that need deep manual examination.

•	 Smart View in Audit Workbench helps developers quickly understand how multiple
issues are related from a data flow perspective, with the ability to sort security
issues and then fix issues at the most efficient point.

Connect with Us
www.opentext.com

OpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes. From prevention, detection and response to recovery, investigation and compliance,
our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio. Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk.

762-000040-002 | O | 11/23 | © 2023 Open Text

https://www.opentext.com
https://www.linkedin.com/showcase/9022/
https://twitter.com/OpenTextSec

Accessibility Report

		Filename:

		7620040-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

