
Imaging for Windows®

Automation Guide

Imaging for Windows®

Automation Guide
Copyright© 1998-2008, Global 360, Inc.
www.global360.com

Disclaimer of Warranties and Limitation of Liabilities

Nothing contained herein modifies or alters in any way the standard terms and conditions of the
purchase, lease, or license agreement by which the product was acquired, nor increases in any way the
liability of the supplier of the software, its affiliates or suppliers (“the Supplier”). In no event shall the
Supplier be liable for incidental or consequential damages in connection with or arising from the use of
the product, the accompanying manual, or any related materials.

Software Notice
All software must be licensed to customers in accordance with the terms and conditions of any approved
and authorized license. No title or ownership of the software is transferred, and any use of the software
beyond the terms of the aforesaid license, without written authorization of the publisher, is prohibited.

Restricted Rights Legend
The Licensed Product and accompanying documentation are Commercial Computer Software and
documentation as defined under Federal Acquisition Regulations and agency supplements to them. Use,
duplication or disclosure by the U.S. Government is subject to the restrictions of these licensing terms and
conditions as prescribed in DFAR 227.7202-3(a) and DFAR 227.7202-4 or, as applicable, the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19. Manufacturer is
Global 360, Inc., One Lincoln Centre, 5400 LBJ Freeway, Suite 300, Dallas, TX 75240, USA.

Microsoft and Windows are registered trademarks and Vista is a trademark of Microsoft Corporation in the USA and in
other countries.
Other product names mentioned in this guide may be trademarks or registered trademarks of their respective companies.

Contents

Imaging for Windows®

Automation Guide

About This Guide

Purpose x

Prerequisites x

Related Information x

Support x

1 Adding Imaging Using Automation

Overview 2

Imaging Components 3
Imaging Application 4
Imaging Flow 5
Imaging Preview 6

Invoking Imaging for Windows 7
Command Line Invocation 7
OLE 8

Embedded Image Files 9
Linked Image Files 9

When to Use Automation 10

The Object Hierarchy 11
Application Object 11
ImageFile Object 12
Page Object 12
PageRange Object 12

Contents
Imaging Application Modes 13
Automation Server Mode 13
Embedded Server Mode 13
Examples 14

As an Automation Server Application 14
As an Embedded Server Application 18

Demonstration Project 20
View Modes 20

One Page 21
Thumbnail 22
Page and Thumbnails 23

Example 24
The Automation From Excel Project 25

Opening the Spreadsheet File 26
Opening and Displaying the Image File 27
Obtaining the Page Count 31
Rotating an Image Page 32
Setting the One Page View Mode 33
Setting the Thumbnail View Mode 34
Setting the Page and Thumbnails View Mode 35
Closing the Image File and the Imaging
Application 36

2 Automation Lexicon

Overview 38

Application Object 38
Application Object Properties 38

ActiveDocument Property 40
AnnotationPaletteVisible Property 40
Application Property 40
AppState Property 40
DisplayScaleAlgorithm Property 41
Edit Property 41
FullName Property 42
Height Property 42
ImagePalette Property 42
iv

Contents
ImageView Property 43
ImagingToolBarVisible Property 43
Left Property 44
Name Property 44
Parent Property 44
Path Property 44
ScannerIsAvailable Property 44
ScanToolBarVisible Property 45
ScrollBarsVisible Property 45
StatusBarVisible Property 46
ToolBarVisible Property 46
Top Property 46
TopWindow Property 47
Visible Property 47
WebToolBarVisible Property 47
Width Property 48
Zoom Property 48

Application Object Methods 48
CreateImageViewerObject Method 49
FitTo Method 49
Help Method 50
Quit Method 50

ImageFile Object 50
ImageFile Object Properties 50

ActivePage Property 51
Application Property 51
FileType Property 51
Name Property 52
OCRLaunchApplication Property 52
OCROutputFile Property 53
OCROutputType Property 53
PageCount Property 53
Parent Property 53
Saved Property 53

ImageFile Object Methods 54
AppendExistingPages Method 55
Close Method 56
CreateContactSheet Method 56
FindOIServerDoc Method 57
v

Contents
Help Method 57
InsertExistingPages Method 57
New Method 58
Ocr Method 59
Open Method 59
Pages Method 61
Print Method 61
RotateAll Method 61
Save Method 62
SaveAs Method 62
SaveCopyAs Method 63
Update Method 63

Page Object 64
Page Object Properties 64

Application Property 64
CompressionInfo Property 64
CompressionType Property 66
Height Property 66
ImageResolutionX Property 67
ImageResolutionY Property 67
Name Property 67
PageType Property 68
Parent Property 68
ScrollPositionX Property 68
ScrollPositionY Property 69
Width Property 69

Page Object Methods 69
Delete Method 70
Flip Method 70
Help Method 70
Ocr Method 70
Print Method 70
RotateLeft Method 70
RotateRight Method 71
Scroll Method 71
vi

Contents
PageRange Object 72
PageRange Object Properties 72

Application Property 72
Count Property 72
EndPage Property 72
Parent Property 73
StartPage Property 73

PageRange Object Methods 73
Delete Method 74
Ocr Method 74
Print Method 74
vii

About This Guide
This guide describes the Automation component of the
Global 360 Imaging for Windows® Developer Resources.
Automation enables you to access Imaging objects
programmatically using Visual Basic or another application that
supports Automation.

In this Chapter
Purpose ... x

Prerequisites .. x

Related Information... x

Support ... x

About This Guide
Purpose
The Automation Guide describes the Automation features of
Global 360 Imaging for Windows®.

Prerequisites
To use this product, you should be familiar with the Microsoft®
Windows® environment. If you are using a printer, scanner, or
TWAIN-compliant device, you should also know how to connect
and operate it.

If you plan to access documents residing on Global 360 Imaging
Server (1.x) or an Execute360 server, you should be familiar with
navigating document databases in those environments.

Related Information
For updated product information and general information about
Imaging for Windows, visit our Web site at

www.global360.com

Support
Should you have questions regarding Imaging for Windows, or

problems with your system after installation, consult your customer
support representative.

For technical support, visit our Web site at

www.global360.com
x

http://www.global360.com
http://www.global360.com

1

Adding Imaging Using Automation

This chapter provides an overview of Imaging for Windows® and

explains how to use Automation to image-enable your
applications. It describes the object hierarchy of the Imaging
application and explains how the Imaging application can function
as an Automation server application or an Embedded server
application. It also walks you through a sample project to help you
get started.

In This Chapter
Overview ...2

Imaging Components ..3

Invoking Imaging for Windows ..7

When to Use Automation..10

The Object Hierarchy ...11

Imaging Application Modes ...13

Demonstration Project ...20

Chapter 1
Overview
Imaging for Windows® features a rich Automation interface that
provides programmatic access to the internal services of the
Imaging application.

Automation is a powerful way to image-enable your application. It
enables you to control the Imaging application programmatically
from your application and to provide your users with the image
display and manipulation functions that are contained within the
Imaging application. You, in effect, make the Imaging application
a fully functional, tested, and trusted component of your application.

In addition to automating the Imaging application from your
programs, you can also automate it from other Automation-
capable programs, such as Microsoft® Word and Excel.

The Imaging application implements Automation as a full object
model, similar to the Automation model of Microsoft Word and
Microsoft Excel.

The object hierarchy starts with the Application object, continues
with an ImageFile object and one or more Page objects, and then
concludes with a Page Range object. Each object has its own set
of properties and methods.

Note: You cannot use Automation to control the Imaging
Preview and Imaging Flow applications.
When the Imaging application is launched through
Automation, it has a Single Document Interface (SDI). PDF
files cannot be displayed.

Components are software
modules that can be “plugged
into” applications from other
vendors. They provide end
users with a specific set of
additional functions and
capabilities.

Note: Chapter 2 in this guide describes the properties and
methods of each object.
2

Adding Imaging Using Automation
The Automation demonstration project described later in this
chapter shows you how to use Automation in Excel to:

■ Invoke the Imaging application.

■ Display an image.

■ Select the view mode.

■ Rotate the image.

■ Obtain the number of pages in the image file.

Imaging Components
Imaging for Windows lets your users access and control paper-
based information directly on their computers. With it, users can
view, manipulate, annotate, print, file, and share documents they
used to manage as cumbersome paper files.

The following sections describe the components of Imaging for
Windows.
3

Chapter 1
Imaging Application
The Imaging application is the main component of Imaging for
Windows. It enables users to scan, view, annotate, manipulate, and
store faxes, paper documents, and electronic images.
4

Adding Imaging Using Automation
Imaging Flow
Imaging Flow enables users to automatically capture, process, and
output image files. An intelligent and editable procedure — called
a flow — defines and controls the work Imaging Flow performs.
5

Chapter 1
Flow tools included within each flow perform specific functions.
They can:

■ Capture images from:

− Scanners.

− MAPI-compliant in-boxes.

− Local and network folders.

■ Process images by:

− Converting them from one file type to another.

− Applying compression.

− Enhancing their appearance.

− Permitting their review.

− Converting them to text.

− Deleting specified pages.

− Entering information about an image document while the
flow is processing.

− Running a custom process.

■ Output images by:

− Posting them to Exchange folders.

− Saving them to local or network folders.

− Saving them to Execute360 Imaging or Imaging (1.x)
servers.

− Printing them.

− Sending them to others via e-mail.

− Running a custom process.

Imaging Preview
Imaging Preview is a light version of the Imaging application. It
lets users view image files quickly and, if necessary, load them into
the Imaging application for editing.
6

Adding Imaging Using Automation
Invoking Imaging for Windows
Imaging for Windows includes several development tools and
methods that let you add Imaging functions to your applications.
The development tools and methods include:

■ Command line invocation

■ OLE

■ Automation

Command Line Invocation
You can invoke the Imaging application using its command line.
Command line invocation is the most simple but least powerful
way to implement Imaging functions in your application.

Because the command line can accept a fully qualified image file
name, you can use standard Shell functions within your
application to invoke the Imaging application with an image on
display.

Within your call to the Shell function, include the path and file
name of the Imaging application along with the path and file
name of the image file you want it to display.

For example, if you are developing under Imaging, you can use
the following statement to invoke the Imaging application and
display an image file:

Shell("c:\Program Files\Common Files\
Global 360\Imaging\Imaging.exe c:\Quote.tif", 1)

Employing the command line interface does not make the
Imaging application a full-fledged component of your application.
The command line interface does not give you the opportunity to
manipulate the application or the image after it is displayed.
7

Chapter 1
OLE
You can use standard OLE functions to embed and link image files
in your application and other applications, such as Microsoft
Word, Excel, Access, and SQL Server. OLE lets you add a subset
of Imaging functions to your application. It is useful when you
want to add Imaging functions with an absolute minimum of
coding.

Using a container control such as that provided by Visual Basic,
you can add image files as insertable objects within your
application at design time. Image files can be embedded or linked.
For example, you can use the Visual Basic OLE Container control
to easily embed or link image files in your application.

As an alternative, you can use the container control to create a
placeholder in your application for image files that will be added at
run time. Set the appropriate properties or provide end users with
drag-and-drop capability so they can select image files for display
at run time.

OLE does not make the Imaging application a full-fledged
component of your application. OLE does not give you the
opportunity to manipulate the application or the image after it is
displayed.

Users can edit embedded images within your application and
linked images within the Imaging application.

Your application is the container, while the Imaging application is
the server. Users can edit and open embedded or linked image
files, as described in the following sections.
8

Adding Imaging Using Automation
Embedded Image Files

When you embed an image file in your application, the
application stores the image data within it.

When end users edit an embedded image file, it becomes “in-
place activated,” causing your application to display a subset of the
Imaging application menus. The menus provide access to Imaging
functions that let users edit the activated image file in-place, that
is, within your application.

When end users open an embedded image file, the Imaging
application appears with the embedded image displayed within it.
Changes users make to the image in the Imaging application also
appear on the linked image in your application. If desired, users
can save a copy of the image to another file by clicking SaveAs on
the File menu.

Linked Image Files

When you link an image in your application, the image data
remains external to your application. Your application stores only a
reference to the image file.

When end users edit or open a linked image file, the Imaging
application appears with the image file displayed. This enables
them to perform the full range of Imaging functions on the
displayed image file.

In-place activation is not available because the linked image file
may also be available to other containers (referential integrity).

As in the case of embedded image files, changes users make to the
image in the Imaging application also appear on the linked image
in your application.
9

Chapter 1
When to Use Automation
Automation lets you add Imaging functions to your application by
making the Imaging application a full-fledged component of your
application.

Automation is useful when you want images to be displayed in a
window that is separate from your application and when you want
to control the Imaging application from your application.

Your application can control the state of the Imaging application as
well as manipulate the displayed image but your application cannot
respond to events that occur when users perform Imaging
operations.

Depending on the degree of control you want to exert,
automating the Imaging application from your application can be
accomplished with a minimal or substantial amount of coding.

Example
Imaging Flow, a component of Imaging for Windows,
demonstrates a good example of Automation.

The Review flow tool invokes the Imaging application to permit
users to review image files as they are being processed by the
current flow.

At flow design time, the author can set Review tool options that
manipulate the Imaging application as well as the image it displays.
These options include:

■ Whether to view image pages, thumbnails, or both.

■ The size and position of the Imaging application window.

■ The zoom setting to apply to images.

■ Whether to open image files as read only.

■ Whether to scale black-and-white images to gray.
10

Adding Imaging Using Automation
The Object Hierarchy
The object model of the Imaging application includes:

■ One top-level object, called the Application object;

■ One document object, called the ImageFile object; and

■ Two objects that support the ImageFile object, called
the Page object and the PageRange object.

The first time you start the Imaging application, it adds the
Application object to the Windows® registry. Imaging
Automation exposes only the Application object for creation.
Other programmable objects can be created by referencing the
Application object.

Each object in the hierarchy has its own set of properties and
methods. Refer to Chapter 2 for a description of the properties
and methods of each object.

Application Object
Use the Application object to create an instance of the Imaging
application and to control it. The Application object controls
every other object you create as well as the environment of the
application, such as the application’s size and position.

Application Object

ImageFile Object

Page Object

PageRange Object
11

Chapter 1
ImageFile Object
The ImageFile object represents an image document file. Use it to
specify the name of an image file and to provide basic filing
functions such as open, save, close, print, insert, update, and
append. Use it also to provide image manipulation functions such
as rotate, create contact sheet, and perform OCR.

Page Object
Each Page object represents an image document page. Use it to
manipulate the individual pages of an image file and to provide
functions such as delete, flip, print, rotate, scroll, and perform
OCR.

PageRange Object
The PageRange object represents a range of consecutive pages
within an ImageFile object — starting at the StartPage property
and ending at the EndPage property. Use it to manipulate a range
of pages and to provide page manipulation functions such as
delete, print, and perform OCR.

Note: Automation is not aware of the actions performed by
users within the Imaging application. The objects known
to Automation remain in the state they were in when last
affected programmatically.
In other words, if users change a displayed object, Auto-
mation does not update that object within its Application
object. For example, if users change the active page,
Automation does not update the ActivePage property.
However, properties and methods are available that let
you determine whether a change has occurred. At your
option, you can use them to update the corresponding
objects known to Automation.
12

Adding Imaging Using Automation
Imaging Application Modes
The Imaging application can function as an Automation server
application or as an Embedded server application.

The following sections describe each mode and include examples.

Automation Server Mode
In every version of Imaging for Windows, the Imaging application
can function as a stand-alone Automation server application.

When automated in this mode, the Imaging application is directed
to display and manipulate an image file that is external to your
application; such as a file resident on a local or network drive.
Your program uses the properties and methods of the Imaging
Automation objects to control the Imaging application and to
display and manipulate the image.

The demonstration project, described later in this chapter, is an
excellent example of using the Imaging application as an
Automation server application.

Embedded Server Mode
Imaging for Windows has several Imaging Automation properties
and methods to manipulate an embedded image document object.

When automated in this mode, the Imaging application is directed
to manipulate an image document object that has been embedded
into your program using, for example, the OLE Container control
of Visual Basic.

You can use the AppState
property of the Application
object to determine whether
the Imaging application is
running as an Automation
server or an Embedded server.
13

Chapter 1
Depending on how you code your application, you can
manipulate the embedded image document in-place or within the
Imaging application window (refer to the next section for
examples).

Examples
This section contains examples that show how to automate the
Imaging application as a stand-alone Automation server
application and as an Embedded server application.

As an Automation Server Application

This example shows how to use Visual Basic to automate the
Imaging application as an Automation server application. (Refer
to the code snippet at the end of this section.)

Automating the Imaging application involves a series of
programming steps that begin with the creation of Application and
Image File objects and continue with the application control and
image manipulation functions you want to perform.

Note: The Automation interface allows the in-place activation of
embedded objects only. It does not permit the in-place
activation of linked objects.

Note: The example that demonstrates automating the Imaging
application as an Automation server application is more
extensive because:
■ The principles behind automating the Imaging application

are similar no matter which mode is used.
■ Use of the Imaging application as an Automation server

application is more prevalent.
14

Adding Imaging Using Automation
To create the Application and Image File Objects

1 Declare the object variables that will contain references to the
Application and Image File objects.

2 Use the Set statement and the CreateObject function of
Visual Basic to create and return a reference to the Application
object.

3 Use the Set statement of Visual Basic and the
CreateImageViewerObject method of the Application
object to create and return a reference to the ImageFile object.

With the Application and ImageFile objects instantiated, you
can now manipulate the Imaging application as well as any
image the application displays.

To manipulate the Imaging Application

1 Set the TopWindow property of the Application object to
True to have the Imaging application window remain on top
of all other applications that may be running.

2 Invoke the Open method of the ImageFile object to open and
display an image file. In your call to the Open method, pass the
following parameters:

ImageFile — The path and file name of the image file to
display

IncludeAnnotation (optional) — True or False: whether to
display annotations that may be present in the image file

Page (optional) — The number of the image page to display

DisplayUIFlag (optional) — True or False: whether to
display the Open dialog box, which lets end users select the
file they want to display

After you create an object,
you can access the properties
and methods of the object
using the object variable.
15

Chapter 1
Now that an image is open and on display, you can manipulate
it. The following paragraphs provide some examples.

− Invoke the RotateLeft method of the Page object to rotate
page 1 of the image file 90 degrees to the left. Keep in mind
that there is one Page object for each image page in the file.

− Use the Height property of the Page object to assign the
height of page 1 to the local variable lngPageHeight.

− Invoke the Print method of the PageRange object to print
pages 1 and 2 on the default printer.

− Set the ActivePage property of the ImageFile object to 2 to
display page 2 of the image file.

To close the Image File and exit the Application

1 Invoke the Close method of the ImageFile object to close the
image file.

2 Invoke the Quit method of the Application object to exit the
application.

3 Set the object variables to Nothing to free system resources.

A PageRange object
represents a range of
consecutive pages within an
ImageFile object.
16

Adding Imaging Using Automation
'Declare variables
 Dim objApp As Object
 Dim objImg As Object
 Dim vntPrtRange As Variant
 Dim lngPageHeight As Long

'Create the Application object (Standard VB call)
 Set objApp = CreateObject("Imaging.Application")

'Create the ImageFile object
 Set objImg = objApp.CreateImageViewerObject(1)

'Set the application's TopWindow property to TRUE (stay on top)
 objApp.TopWindow = True

'Call the ImageFile object Open Method to display page 1 of myimage.tif
 objImg.Open "c:\images\myimage.tif", True, 1, False

'Create and rotate one Page object
 objImg.Pages(1).RotateLeft

'Return the height of the image from the Page object
 lngPageHeight = objImg.Pages(1).Height

'Create a PageRange object and print pages 1 and 2
 vntPrtRange = objImg.Pages(1,2).Print

'Display page 2 of the image
 objImg.ActivePage = 2

'Close ImageFile object and quit the application
 objImg.Close
 objApp.Quit

'Release system resources
 Set objApp = Nothing
 Set objImg = Nothing
17

Chapter 1
Methods Not Available in Automation Server Mode
You cannot use the following methods when the Imaging
application is functioning as an Automation server application:

■ SaveCopyAs method of the ImageFile object

■ Update method of the ImageFile object

As an Embedded Server Application

The following sections demonstrate how to automate the Imaging
application as an Embedded server application. The examples
assume you are embedding an image document object into a
Visual Basic application using the OLE Container control.

Example 1
In this example, the Imaging application displays the embedded
image document in a separate window for editing.

Example 2
In this example, the Imaging application is in-place active and
displays a subset of its menus within your application. The menus
provide access to functions that let users edit the image document
object “in-place” — that is, within your application.

Set objApp = CreateObject("Imaging.Application")
Set objImg = objApp.CreateImageViewerObject(1)
oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEOpen
objImg.InsertExistingPages "Test.tif", 1, 1, 1, False

Set objApp = CreateObject("Imaging.Application")
oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEShow
Set objImg = objApp.CreateImageViewerObject(1)
objImg.InsertExistingPages "Test.tif", 1, 1, 1, False
18

Adding Imaging Using Automation
Example 3
In this example, the Imaging application displays the embedded
image document in an instance of the Imaging application that is
already running.

Properties and Methods Not Available in Embedded Server
Mode
You cannot use the following properties and methods when the
Imaging application is functioning as an Embedded server
application:

■ Edit property of the Application object

■ Height and Width properties of the Application object

■ ImageView property of the Application object (if the
application is in-place active)

■ Left property of the Application object

■ Top property of the Application object

■ Close method of the ImageFile object

■ FindOIServerDoc method of the ImageFile object

■ New method of the ImageFile object

■ Open method of the ImageFile object

■ Quit method of the Application object (if the application is in-
place active)

■ SaveAs method of the ImageFile object

oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEOpen
Set objApp = CreateObject("Imaging.Application")
Set objImg = objApp.CreateImageViewerObject(1)
19

Chapter 1
Demonstration Project
This section demonstrates how
to automate the Imaging
application from Microsoft
Excel.

While a wide-ranging dis-
cussion of every Imaging
function is beyond the scope of
this chapter, the information
presented here is sufficient to
get started.

The demonstration project was
developed using Microsoft
Visual Basic for Applications
and Excel.

Even if you are not going to
automate the Imaging
application, you’ll find the
section in this chapter on View
Modes useful.

To help you use Automation to image-enable your applications, a
demonstration project — called Automation From Excel — shows
you how to:

■ Invoke the Imaging application and open an image.

■ Obtain the page count.

■ Rotate an image page.

■ Set the desired view mode.

■ Close the image and the application.

Before walking through the demonstration project, read the
following section, which describes the view modes of the Imaging
application.

View Modes
The Imaging application has three view modes that enable users to
view and work with image files. Each view mode has its own set
of advantages and capabilities.

The ImageView property of the Application object enables you
to invoke — most likely in response to user input — any one of
the three view modes. You should consider making view mode
selection available to your users when automating the Imaging
application.

The following sections describe the view modes.

Note: Chapter 2 of this guide describes the properties and
methods of each Imaging Automation object.
20

Adding Imaging Using Automation
One Page

The One Page view mode lets users display image files one page at
a time. It lets users display image pages in the entire window while
maintaining complete access to the menus, toolbars, and functions
of the application.
21

Chapter 1
Thumbnail

The Thumbnail view mode lets users display image files as a series
of thumbnail images — one for each image page. It lets users:

■ View multiple image pages simultaneously.

■ Rearrange pages using drag and drop.

■ Delete pages.

■ Drag and drop pages to and from other applications that
support drag and drop functionality.

Keep in mind that some Imaging functions — such as annotation
and zoom — are not available in this mode because they are not
appropriate for use on such small images.
22

Adding Imaging Using Automation
Page and Thumbnails

The Page and Thumbnails view mode is a combination of the first
two view modes. It enables users to display image files one page at
a time and as series of thumbnail images — one for each image
page in the file.

This view mode lets users perform Imaging tasks that are available
to both the One Page view mode and the Thumbnail view mode.
23

Chapter 1
Example
Users of Excel may want to display and manipulate an image file
referenced within a spreadsheet.

Scenario

In her role as a product manager for a major computer company,
Eileen regularly uses Microsoft Excel to create product
configurations of computers sold on contract to government
agencies.

After she completes a configuration spreadsheet, she typically
submits it to review via e-mail. In the past, several reviewers have
requested that she also include a scanned copy of the contract.

At a recent employee meeting, Eileen asked whether her reviewers
could display a scanned contract from Excel. Knowing that
Imaging for Windows is on every desktop in the company, you
told her that you could automate the Imaging application from
Excel to give her reviewers quick access to a scanned contract, or
any other image file for that matter.

All Eileen needs to do is:

1 Scan the contract using Imaging for Windows.

2 Import your code module into her Excel spreadsheet.

3 Enter the path and file name of the scanned contract in Cell A1
of the spreadsheet.

4 Send both the image file and the spreadsheet file to her
reviewers.
24

Adding Imaging Using Automation
The Automation From Excel Project
The Automation From Excel project demonstrates:

■ Invoking the Imaging application and opening an image from
Excel.

■ Obtaining the page count.

■ Rotating an image page.

■ Setting the desired view mode.

■ Closing the image and the application.

The project consists of the following files:

ImagingAutomation.xls — A sample spreadsheet that contains
the AutoFromExcel.bas code module.

Facc.tif — A sample TIFF image file that simulates the title page
of a government contract.

The AutoFromExcel.bas code module contains the following
macros:

f_InitializeApp() — Initializes the Imaging application.

s_DispImg() — Displays the image file.

s_GetPagecount() — Obtains the number of pages in the image
file and displays it in a worksheet cell.

s_RotateImg() — Rotates the image 90 degrees to the left.

s_ViewSingle() — Places the Imaging application in the One
Page view mode.

s_ViewThumbnails() — Places the Imaging application in the
Thumbnail view mode.

s_ViewThumbAndSingle() — Places the Imaging application
in the Page and Thumbnails view mode.

s_CloseImg() — Closes the image file and exits the Imaging
application.

The file names for the
Automation From Excel
project are
ImagingAutomation.xls,
and Facc.tif.
25

Chapter 1
The AutoFromExcel.bas code module uses the following
Automation methods to provide the Imaging functions:

Open method (ImageFile object) — Opens the image file in the
Imaging application.

CreateImageViewerObject method (Application object) —
Creates and returns an ImageFile object.

RotateLeft method (Page object) — Rotates the image 90
degrees counterclockwise.

Close method (ImageFile object) — Closes the ImageFile
object.

Quit method (Application object) — Exits the application.

Opening the Spreadsheet File

Start Excel and then open the ImagingAutomation.xls file. The
sample spreadsheet appears.
26

Adding Imaging Using Automation
Opening and Displaying the Image File

Give focus to Cell A1, which contains the path and file name of
the sample TIFF image file.

On the Tools menu, point to Macro and then click Macros. The
Macro dialog box appears.

Click the s_DispImg macro and then click Run.

When the macro runs, code in the General Declarations area
of the code module defines the object variables that contain
references to the Application and Image File objects.

Dim objApp As Object
Dim objImg As Object
27

Chapter 1
Then, the s_DispImg() subroutine executes its code.

The s_DispImg() subroutine obtains the path and file name of
the image file to open from the active cell of the spreadsheet.
Then it assigns the path and file name to the strCurrentFile
local variable.

Sub s_DispImg()

 Dim strCurrentFile As String
 Dim strCurrentImageName As String

 'Get file name to display from spread sheet
 strCurrentFile = ActiveCell.Value
 .
 .
 .
 'If the Application object not created, create it.
 If objApp Is Nothing Then
 If f_InitializeApp() = False Then 'Continue if successful
 Exit Sub
 End If
 End If

 'Make the Imaging application on-top.
 objApp.TopWindow = True

 On Error Resume Next 'If no file is open.
 'Get the name of the open Image file.
 strCurrentImageName = objImg.Name

 On Error GoTo 0 'Reset error handler
 If strCurrentImageName <> "" Then
 'Always close existing image file before opening a new one.
 objImg.Close
 End If

 On Error GoTo OpenImageMethodError
 'Open the Image file in the ActiveCell
 objImg.Open strCurrentFile
 Exit Sub

OpenImageMethodError:
 sMsg = "Error => " & Str$(Err.Number) & " " & Err.Description
 MsgBox (sMsg)
 'Close the Imaging application
 s_CloseImg

End Sub
28

Adding Imaging Using Automation
Next, the subroutine checks to see whether an instance of the
Imaging application exists. If it does not, it invokes the
f_InitializeApp() function.

The f_InitializeApp() function uses the Set statement and the
CreateObject function of Visual Basic to create and return a
reference to the Application object. Then it uses the Set statement
of Visual Basic and the CreateImageViewerObject method of
the Application object to create and return a reference to the
ImageFile object.

With the Application and ImageFile objects now fully instantiated,
control returns to the s_DispImg() subroutine.

The _DispImg() subroutine sets the TopWindow property of
the Application object to True to have the Imaging application
window remain on top of all other applications that may be
running.

Then it checks to see whether an image file is already displayed by
examining the value of the Name property of the ImageFile
object. If the Name property is not blank, the subroutine invokes

'--
' Initialize the Imaging application.
' This function will be called when user attempts to open an
' image file for the first time and the Imaging application
' is not loaded.
' If the Imaging application is found and the Application object
' and the Image object are set, the function returns TRUE;
' otherwise, the function returns FALSE.
'--
Function f_InitializeApp() As Boolean

 Set objApp = Nothing
 Set objImg = Nothing
 'Create an Application Object
 Set objApp = CreateObject("Imaging.Application")
 'Create an ImageFile Object
 Set objImg = objApp.CreateImageViewerObject(1)
 f_InitializeApp = True

End Function
29

Chapter 1
the Close method of the ImageFile object to close the displayed
image file.

Next, the subroutine invokes the Open method of the ImageFile
object, passing to it the path and file name of the image to display
(from strCurrentFile). The Open method opens the image file
in the Imaging application window.

Now that the image is open and on display, you can use some of
the other macros to manipulate it and the Imaging application.
30

Adding Imaging Using Automation
Obtaining the Page Count

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_GetPagecount macro and then click Run. The
s_GetPagecount() subroutine executes its code.

The subroutine obtains the page count from the PageCount
property of the ImageFile object and assigns it to the
lngPageCount local variable. Then it invokes the Cells function
of Excel to display the page count (from lngPageCount)in the
cell adjacent to the active cell on the spreadsheet.

Sub s_GetPagecount()

 Dim lngPageCount As Long

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Get the page count.
 lngPageCount = objImg.PageCount

 'Put the page count in the adjacent column.
 Cells(ActiveCell.Row, ActiveCell.Column + 1) = lngPageCount

End Sub
31

Chapter 1
Rotating an Image Page

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_RotateImg macro and then click Run. The
s_RotateImg() subroutine executes its code.

The subroutine obtains the page number of the currently displayed
image page from the ActivePage property of the ImageFile
object, and assigns it to the lngActivepage local variable. Then it
invokes the RotateLeft method of the Page object to rotate the
displayed image page 90 degrees to the left.

Sub s_RotateImg()

 Dim lngActivepage As Long

 If objImg Is Nothing Then
 MsgBox ("Please open an image file first")
 Exit Sub
 End If

 lngActivepage = objImg.ActivePage
 objImg.Pages(lngActivePage).RotateLeft

End Sub
32

Adding Imaging Using Automation
Setting the One Page View Mode

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_ViewSingle macro and then click Run. The
s_ViewSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the
Application object with a parameter value of 0, which places the
Imaging application in the One Page view mode.

Sub s_ViewSingle()

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Place the Imaging application in One Page view mode.
 objApp.ImageView = 0

End Sub
33

Chapter 1
Setting the Thumbnail View Mode

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_ViewThumbnails macro and then click Run. The
s_ViewThumbnails() subroutine executes its code.

The subroutine invokes the ImageView method of the
Application object with a parameter value of 1, which places the
Imaging application in the Thumbnail view mode.

Sub s_ViewThumbnails()

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Place the Imaging application in Thumbnail view mode.
 objApp.ImageView = 1

End Sub
34

Adding Imaging Using Automation
Setting the Page and Thumbnails View Mode

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_ViewThumbAndSingle macro and then click Run.
The s_ViewThumbAndSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the
Application object with a parameter value of 2, which places the
Imaging application in the Page and Thumbnails view mode.

Sub s_ViewThumbAndSingle()

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Place the Imaging application in Page and Thumbnails view mode.
 objApp.ImageView = 2

End Sub
35

Chapter 1
Closing the Image File and the Imaging
Application

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_CloseImg macro and then click Run. The
s_CloseImg() subroutine executes its code.

The subroutine invokes the Close method of the ImageFile object
to close the currently displayed image file. Then it invokes the
Quit method of the Application object to close the Imaging
application. Finally, it sets the object variables to Nothing to free
system resources.

Sub s_CloseImg()

 On Error Resume Next
 objImg.Close 'Close open image
 objApp.Quit 'Quit Automation application
 Set objImg = Nothing 'Destroy Image object
 Set objApp = Nothing 'Destroy Application object
 On Error GoTo 0 'Reset Error handler

End Sub
36

2

Automation Lexicon

This chapter describes the properties and methods of each

Imaging for Windows® Automation object.

In this Chapter
Overview ...38

Application Object ...38

ImageFile Object ..50

Page Object ...64

PageRange Object ...72

Chapter 2
Overview
Automation enables you to control the Imaging application
programmatically from within your application. Using it, you can
provide your end users with all of the capabilities of the Imaging
application.

Each object has its own set of properties and methods. The
remainder of this chapter describes each one.

Application Object
The Application object is a top-level object that controls every
other object you create. The Application object also allows you to
set the environment. For example, you can control the size and
position of the Imaging application window and the visibility of
scroll bars, the status bar, and the toolbar.

Application Object Properties
The following table lists the Application object properties. The
properties that affect the displayed image (for example,
DisplayScaleAlgorithm, ImagePalette, and Zoom) affect
every image displayed in the Application object.

Note: Refer to Chapter 1 of this guide for more information
about using Automation to image-enable your
applications.

Application Object Properties

Property Description

ActiveDocument Returns the active ImageFile object.

AnnotationPaletteVisible Sets or returns the visibility of the application's annotation
palette.

Application Returns the Application object.

AppState Returns the state of the image viewer application.

DisplayScaleAlgorithm Sets or returns the scaling algorithm used for displaying
images.
38

Automation Lexicon
Edit Sets or returns the application’s ability to edit the displayed
object.

FullName Returns the file specification for the Application object.

Height Sets or returns the distance between the top and bottom
edge of the application window.

ImagePalette Sets or returns the image palette used for image display.

ImageView Sets or returns the present image view.

ImagingToolBarVisible Sets or returns the visibility of the application’s scan tool-
bar.
Not available in all releases.

Left Sets or returns the distance between the left edge of the
physical screen and the main application window.

Name Returns the name of the Application object.

Parent Returns the Application object.

Path Returns the path specification for this application’s execut-
able file.

ScannerIsAvailable Sets or returns the state of the scanner.

ScanToolBarVisible Sets or returns the visibility of the application’s imaging
toolbar.

ScrollBarsVisible Sets or returns the visibility of the application’s scroll bars.

StatusBarVisible Sets or returns the visibility of the application’s status bar.

ToolBarVisible Sets or returns the visibility of the application’s toolbar.

Top Sets or returns the distance between the top edge of the
physical screen and application’s window.

TopWindow Sets or returns the application’s top window flag.

Visible Returns the visibility of the application.

WebToolBarVisible Sets or returns the visibility of the web toolbar.

Width Sets or returns the distance between the left and right
edges of the application’s window.

Zoom Sets or returns the zoom factor for image display.

Application Object Properties (cont.)

Property Description
39

Chapter 2
ActiveDocument Property
Description Returns the active ImageFile object in the Application object. This is a read-only property.

Usage ApplicationObject.ActiveDocument

Data Type Object.

Example 'This example returns the ImageFile object in the application.
Dim Img as Object
Set Img = App.ActiveDocument

AnnotationPaletteVisible Property
Description Sets or returns the visibility of the annotation palette. This is a read/write property.

Usage ApplicationObject.AnnotationPaletteVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The AnnotationPaletteVisible property settings are:

Application Property
Description Returns the Application object. This is a read-only property.

Usage ApplicationObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Parent As ObjectSet Parent = App.Application

AppState Property
Description Returns the state of the Application object. The state indicates whether the application is

running as an embedded or automation server. This is a read-only property.

Usage ApplicationObject.AppState

Data Type Short.

Remarks The AppState property settings are:

Setting Description

True (Default) The annotation palette is visible.

False The annotation palette is not visible.

Setting Description

1 The application is running as an embedded server.

2 The application is running as an automation server.
40

Automation Lexicon
DisplayScaleAlgorithm Property
Description Sets or returns the scaling algorithm used for displaying images. This is a read/write

property.

Usage ApplicationObject.DisplayScaleAlgorithm [=value]

Data Type Short.

Remarks The DisplayScaleAlgorithm value can be specified before or after an image is displayed. The
property settings are:

Edit Property
Description Sets or returns the Application object’s ability to edit the displayed object. You should set

the Edit property prior to opening each ImageFile object. This is a read/write property.

Usage ApplicationObject.Edit = [{True|False}]

Data Type Integer (Boolean).

Remarks The Edit property settings are:

Setting Description

0 (Default) Normal decimation.

1 Gray4 — 4-bit gray scale (16 shades of gray).

2 Gray8 — 8-bit gray scale (256 shades of gray).

3 Stamp — Represents the image as a thumbnail.

4 Optimize — Changes the display scale algorithm based on the image
type of the displayed image. Black and white images are scaled to gray.
Palettized
4- and 8-bit, RGB, and BGR images remain color.

Note: This property must be set prior to opening the ImageFile object. For this
property to take effect after an image is open, you must reopen the image.

Setting Description

True (Default) Image editing is available.

False The displayed object cannot be changed.

Note: You must set the Edit property prior to opening the ImageFile object. You
can only set the Edit property once in the current session.
41

Chapter 2
FullName Property
Description Returns the file specification for the Application object, including the path. This is a read-

only property.

Usage ApplicationObject.FullName

Data Type String.

Height Property
Description Sets or returns the distance, in pixels, between the top and bottom edge of the Application

object’s window. This is a read/write property.

Usage ApplicationObject.Height [=value]

Data Type Long.

Remarks This property must be set prior to opening the ImageFile object. It only takes effect if the
Width, Top, and Left properties are also set. If you set the Height property to less than
the minimum allowable window size, the value is ignored. The minimum setting is usually
27.

The Height property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

ImagePalette Property
Description Sets or returns the image palette used to display an image. This is a read/write property.

Usage ApplicationObject.ImagePalette [=value]

Data Type Short.

Remarks The ImagePalette property settings are:

Note: The ImagePalette property must be set prior to opening the ImageFile
object. For this property to take effect after an image is open, you must
reopen the image.

Setting Description

0 (Default) Custom

1 Common

2 Gray8 — 8-bit grayscale (256 shades of gray)

3 RGB24 — 24-bit (millions of colors)

4 Black and white
42

Automation Lexicon
ImageView Property
Description Sets or returns the present image view. This is a read/write property.

Usage ApplicationObject.ImageView [=value]

Data Type Short.

Remarks The ImageView property settings are:

The ImageView property and the ImageFileObject.ActivePage property have
the following relationships:

See Also ImageFileObject.ActivePage property.

ImagingToolBarVisible Property
Description Sets or returns the visibility of this Application object’s imaging toolbar. This is a read/write

property.

Usage ApplicationObject.ImagingToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ImagingToolBarVisible property settings are:

Setting Description

0 (Default) One page view

1 Thumbnails view

2 Page and Thumbnails view

View Relationship

One Page (Default) The active page is displayed.

Thumbnails The active page appears in thumbnail view.

Page and Thumbnails The active page is the page that is displayed.

Setting Description

True (Default) The imaging toolbar is visible.

False The imaging toolbar is not visible.
43

Chapter 2
Left Property
Description Sets or returns the distance, in pixels, between the left edge of the physical screen and the

Application object’s window. This is a read/write property.

Usage ApplicationObject.Left [=value]

Data Type Long.

Remarks The Left property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Top properties are also set.

The Left property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

Name Property
Description Returns the name of this Application object. This is a read-only property.

Usage ApplicationObject.Name

Data Type String.

Parent Property
Description Returns the parent of the Application object. This is a read-only property.

Usage ApplicationObject.Parent

Data Type Object.

Path Property
Description Returns the path specification for the Application object’s executable file. This is a read-

only property.

Usage ApplicationObject.Path

Data Type String.

ScannerIsAvailable Property
Description Sets or returns the availablity of the scanner. This is a read/write property.

Usage ApplicationObject.ScannerIsAvailable = [{True|False}]

Data Type Integer (Boolean).
44

Automation Lexicon
Remarks The ScannerIsAvailable property settings are:

ScanToolBarVisible Property
Description Sets or returns the visibility of this Application object’s scan toolbar. This is a read/write

property.

Usage ApplicationObject.ScanToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ScanToolBarVisible property settings are:

ScrollBarsVisible Property
Description Sets or returns the visibility of the Application object’s scroll bars. This is a read/write

property.

Usage ApplicationObject.ScrollBarsVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ScrollBarsVisible property settings are:

Setting Description

True (Default) The scanner is available. If no scanner is attached to the system,
this property setting is False.

False The scanner is unavailable.

Setting Description

True The scan toolbar is visible.

False (Default) The scan toolbar is not visible.

Setting Description

True (Default) The scroll bars are visible.

False The scroll bars are not visible.

Note: The ScrollBarsVisible property must be set prior to opening the ImageFile
object. For this property to take effect after an image is open, you must
reopen the image.
45

Chapter 2
StatusBarVisible Property
Data Type Sets or returns the visibility of this Application object’s status bar. This is a read/write

property.

Usage ApplicationObject.StatusBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The StatusBarVisible property settings are:

ToolBarVisible Property
Data Type Sets or returns the visibility of this Application object’s standard toolbar. Read/write

property.

Usage ApplicationObject.ToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ToolBarVisible property settings are:

Top Property
Description Sets or returns the distance, in pixels, between the top edge of the physical screen and main

application window. This is a read/write property.

Usage ApplicationObject.Top

Data Type Long.

Remarks The Top property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Left properties are also set.

The Top property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

Setting Description

True (Default) The status bar is visible.

False The status bar is not visible.

Setting Description

True (Default) The toolbar is visible.

False The toolbar is not visible.
46

Automation Lexicon
TopWindow Property
Description Sets or returns this Application object’s top window flag. This is a read/write property.

Usage ApplicationObject.TopWindow = [{True|False}]

Data Type Integer (Boolean).

Remarks The TopWindow property settings are:

Example 'This example makes the application window a stay-on-top window.
App.TopWindow = True

Visible Property
Description Returns the visibility of the Application object. This is a read-only property.

Usage ApplicationObject.Visible

Data Type Integer (Boolean).

Remarks The Visible property settings are:

WebToolBarVisible Property
Description Sets or returns the visibility of this Application object’s web toolbar. This is a read/write

property.

Usage ApplicationObject.WebToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The WebToolBarVisible property settings are:

Setting Description

True The application is a stay-on-top window.

False (Default) The application is not a stay-on-top window.

Setting Description

True The application is visible.

False (Default) The application is not visible.

Setting Description

True The web toolbar is visible.

False (Default) The web toolbar is not visible.
47

Chapter 2
Width Property
Description Sets or returns the distance, in pixels, between the left and right edges of the Application

object's window. This is a read/write property.

Usage ApplicationObject.Width [=value]

Data Type Long.

Remarks The Width property must be set prior to opening the ImageFile object. This property only
takes effect if the Top, Left, and Height properties are also set. If you set the Width
property to less than the minimum allowable window size, the value is ignored. The
minimum setting is usually 112.

The Width property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

Zoom Property
Data Type Sets or returns the zoom factor used for displaying images. This is a read/write property.

Usage ApplicationObject.Zoom [=value]

Data Type Float.

Remarks The zoom factor is a percent value.

Example 'This example sets the zoom factor to 100%.
App.Zoom = 100

'This example returns the current zoom factor.
x = App.Zoom

Application Object Methods
The following table lists the Application object methods.

Application Object Methods

Method Description

CreateImageViewerObject Creates an Imaging object of the specified class.

FitTo Displays the image at the specified zoom option.

Help Displays online Help.

Quit Exits this application and closes all open objects.
48

Automation Lexicon
CreateImageViewerObject Method
Description Creates and returns an ImageFile object. The ImageFile object is empty, with no image file

associated with it. Use the object's Open or New method to associate a specific image file.

Usage ApplicationObject.CreateImageViewerObject([ObjectClass])

Data Type Object.

Remarks This method only supports the ImageFile object, for which the setting is 1.

Example 'This example creates an ImageFile object.
Dim Img as Object
Set Img = App.CreateImageViewerObject(1)

FitTo Method
Description Displays the current image at the specified zoom option. This method updates the

Application object’s Zoom property with the actual zoom factor.

This method affects each view as follows:

Usage ApplicationObject.FitTo (ZoomOption)

Data Type Short.

Remarks ZoomOption settings are:

View Display

One Page The page is zoomed.

Thumbnails No effect — The Application property is changed and
affects other views when they are used.

Page & Thumbnails The page is zoomed — No effect on thumbnails.

Setting Description

1 Best fit

2 Fit to width

3 Fit to height

4 Actual size
49

Chapter 2
Help Method
Description Displays the Imaging online Help table of contents.

Usage ApplicationObject.Help

Quit Method
Description Closes all open objects and exits the application. The Application object is no longer active

or available.

Usage ApplicationObject.Quit

ImageFile Object
An ImageFile object represents an image file. An ImageFile object can have

■ One Page object, representing the currently displayed page of the ImageFile
object.

■ One or more PageRange objects, each representing different and possibly
overlapping page ranges.

ImageFile Object Properties
The following table lists the ImageFile object properties.

ImageFile Object Properties

Property Description

ActivePage Sets or returns the ImageFile object’s current page num-
ber.

Application Returns the Application object.

FileType Returns the ImageFile object’s file type.

Name Returns the name of the active image file.

OCRLaunchApplication Launches an application with an output file after OCRa
processing is complete.

OCROutputFile Sets or returns the output file for OCR processing.

OCROutputType Sets or returns the output file format for OCR process-
ing.

PageCount Returns the number of pages in the ImageFile object.

Parent Returns the parent of the ImageFile object.
50

Automation Lexicon
ActivePage Property
Description Sets or returns the ImageFile object’s active page number. This is a read/write property.

Setting the ActivePage property to a page number causes that page to become
active, which updates the display if the Application object is visible. Refer to the
Application object’s ImageView property for more information about the
relationships between the active page and different views of the page.

Page selection and navigation by the end-user have no effect on the ActivePage
property. The active page is always the active page according to automation.

Usage ImageFileObject.ActivePage [=value]

Data Type Long.

Remarks The number is the page number value.

See Also ApplicationObject.ImageView property.

Application Property
Description Returns the Application object. This is a read-only property.

Usage ImageFileObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Parent As Object
Set Parent = Img.Application

FileType Property
Description Returns the file type of this ImageFile object. This is a read-only property.

Usage ImageFileObject.FileType

Data Type Short.

Saved Returns a flag indicating whether or not the file has
ever been saved.

a. TextBridge® OCR technology by ScanSoft.

ImageFile Object Properties

Property Description

Note: If you set the ActivePage property to a page number beyond those
contained in the document, an error is returned.
51

Chapter 2
Remarks The FileType property settings are:

Name Property
Description Returns a string that contains the name of the active image file. This is a read-only

property.

Usage ImageFileObject.Name

Data Type String.

OCRLaunchApplication Property
Description Launches the Application object with an output file after OCR processing is complete.

This is a read/write property.

Usage ImageFileObject.OCRLaunchApplication = [{True|False}]

Data Type Integer (Boolean).

Remarks The OCRLaunchApplication property settings are:

Setting Description

0 Unknown

1 TIFF

2 Not supported

3 BMP

4 PCX

5 DCX

6 JPG-JFIF

7 XIF

8 GIF

9 WIFF

Setting Description

True (Default) Launch the application.

False Do not launch the application.
52

Automation Lexicon
OCROutputFile Property
Description Sets or returns the output file name. If blank, the SaveAs dialog box is displayed. This is a

read/write property.

Usage ImageFileObject.OCROutputFile = [FileName]

Data Type String.

OCROutputType Property
Description Sets or returns the output file type. This is a read/write property.

Usage ImageFileObject.OCROutputType = [Type]

Data Type Long.

Remarks The OCROutputType property results are:

PageCount Property
Description Returns the number of pages in this ImageFile object. This is a read-only property.

Usage ImageFileObject.PageCount

Data Type Long.

Parent Property
Description Returns the parent of the ImageFile object. This is a read-only property.

Usage ImageFileObject.Parent

Data Type Object.

Example 'This example returns the parent of the ImageFile object.
Dim App As Object
App = Img.Parent

Saved Property
Description Returns the saved state of the ImageFile object. Read-only property.

Usage ImageFileObject.Saved

Data Type Integer (Boolean).

Setting Description

0 Word for Windows/RTF

1 WordPerfect

2 HTML

3 Text
53

Chapter 2
Remarks The Saved property settings are:

Example 'This example returns the saved state of the file.
bIsSaved = Img.Saved

ImageFile Object Methods
The following table lists the ImageFile object methods.

Setting Description

True The ImageFile object has been saved and has not changed since it was last
saved.

False The imageFile object has never been saved and has changed since it was
created; or, it has been saved but has changed since it was last saved.

ImageFile Object Methods

Method Description

AppendExistingPages Appends existing pages to the end of the ImageFile object.

Close Closes the ImageFile object.

CreateContactSheet Saves a contact sheet rendition of the ImageFile object.

FindOIServerDoc Finds Global 360 Imaging 1.x documents and Execute360
Imaging documents. Not available when the application is
running as an embedded server.

Help Displays online Help.

InsertExistingPages Inserts existing pages in the ImageFile object.

New Creates a new blank ImageFile object. Not available when the
application is running as an embedded server.

Ocr OCRs opened Image File.

Open Opens the ImageFile object. Not available when the applica-
tion is running as an embedded server.

Pages Returns a Page or PageRange object for the ImageFile object.

Print Prints the ImageFile object.

RotateAll Rotates all ImageFile object pages.

Save Saves changes to the ImageFile object.

SaveAs Saves the ImageFile object under another name.

SaveCopyAs Saves a copy of the ImageFile object. The application must be
running as an embedded server.
54

Automation Lexicon
AppendExistingPages Method
Description Appends specified page(s) to the end of the current ImageFile object. If the page(s) being

appended come from an image file of a type different than the active image file, the pages
are converted before being appended. After appending page(s), all PageRange objects are
invalid. You can optionally display a dialog box that allows the end-user to select a file from
which to append page(s).

Usage ImageFileObject.AppendExistingPages [ImageFile],[Page],
 [Count],[DisplayUIFlag]

Arguments The AppendExistingPages method has the following parameters:

Example 'This example appends the first page from the file, BW.TIF.
Img.AppendExistingPages "c:\bw.tif", 1

'This example appends a file selected from a dialog box to the
'currently displayed image file. After the user selects a file
'to append, the application prompts the user to specify the
'starting page number and the number of pages to append from
'the selected file.
Img1.AppendExistingPages "", 0, 0, True

'This example appends pages to an Imaging Server 1.x file.
ImgFileObj.AppendExistingPages
 å "Image://nqa11\SYS:\tmp\3PAGES.tif", 1, 3

Update Updates the ImageFile object embedded within the container
application with the current data from the server application.
The application must be running as an embedded server.

Parameter Data Type Description

ImageFile String The image file from which pages will be appended
(source image file).

Page Long The page from which to start appending pages (in the
source image file).

Count Long The number of pages to append.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to select an image file to append.
False (Default) — Does not display a dialog box.
If you specify True and the selected file is a multi-page
file, the user is prompted to select the pages to append.

ImageFile Object Methods (cont.)

Method Description
55

Chapter 2
'This example appends pages to an Imaging Server 1.x document.
ImgFileObj.AppendExistingPages
 å "Image://PATRIOTS\CABINET\DRAWER\FOLDER\doc1", 3, 2

'This example appends pages to an Execute360 Imaging Server
'document.
ImgFileObj.AppendExistingPages "Imagex://sixpage", 1, 6

Close Method
Description Closes the ImageFile object. Closing an ImageFile object deletes it; all Page and PageRange

objects associated with it are also deleted. The Application object no longer has an
ImageFile object associated with it.

Usage ImageFileObject.Close [SaveChangeFlag]

Data Type Integer (Boolean).

Remarks The Close method SaveChangeFlag argument has the following settings:

CreateContactSheet Method
Description Saves a contact sheet rendition of the ImageFile object. This method is unavailable when

the Application is running as an embedded server.

Usage ImageFileObject.CreateContactSheet (ImageFile,
 [IncludeAnnotations], [OpenAfterSave])

Data Type String.

Arguments The CreateContactSheet method has the following parameters:

Setting Description

True Changes are saved when the image file closes.

False (Default) Changes are not saved when the image file closes.

Parameter Data Type Description

ImageFile String The image file object.

IncludeAnnotations Integer Option to include annotations on the image
stamps.

OpenAfterSave Integer Option to open the contact sheet file after it has
been created.
56

Automation Lexicon
FindOIServerDoc Method
Description Finds 1.x documents or Execute360 Imaging documents. This method displays an Imaging

server document Find dialog box, from which the user may search for 1.x documents or
Execute360 Imaging documents. After the user selects a document and chooses the Open
button, the Find dialog box is closed and returns the selected document name, with a path,
to the user. A null string is returned if the user chooses Cancel in the Find dialog box. The
user may use the returned document name string as input for the Image Object Open
method.

Data Type String.

Usage ImageFileObject.FindOIServerDoc

Help Method
Description Displays the Imaging online Help table of contents.

Usage ImageFileObject.Help

InsertExistingPages Method
Description Inserts page(s) into the ImageFile object.

Page(s) to be inserted must come from an existing file. If the pages being inserted
come from an image file of a type different than the active image file, the pages are
converted before being inserted. After inserting page(s), all PageRange objects are
invalid. You can optionally cause a dialog box to open for the end-user to select a
file from which to insert page(s).

Usage ImageFileObject.InsertExistingPages (ImageFile, ImagePage,
 Count, Page, DisplayUIFlag)

Arguments The InsertExistingPages method has the following parameters:

Parameter Data Type Description

ImageFile String The image file from which page(s) are to be inserted
(the source image file).

ImagePage Long The page before which the new page(s) are to be
inserted.

Count Long The number of pages to insert.

Page Long The page in the source image file from which to start
inserting pages.
57

Chapter 2
Example 'This example inserts pages 4 and 5 from the file BW.TIF
'before page 1.
Img.InsertExistingPages "c:\bw.tif", 1, 2, 4

'This example inserts page(s) into the current file at the
'current page. (A dialog box prompts the user for the image
'file to be selected for insertion. Another dialog box
'prompts for a page range.) Page, count, and pagenumber
'arguments are required but ignored when dialogflag is True.
Img.InsertExistingPages "", 1, 1, 2, True

'This example inserts pages in an Imaging Server 1.x file.
 å ImgFileObj.InsertExistingPages
 "Image://nqa11\SYS:\tmp\3PAGES.tif", 2, 3, 1

'This example inserts pages in an Imaging Server 1.x document.
ImgFileObj.InsertExistingPages
 å"Image://PATRIOTS\CABINET\DRAWER\FOLDER\doc1", 2, 3, 1

'This example inserts pages in an Execute360 Imaging Server
document.
ImgFileObj.InsertExistingPages "Imagex://sixpage", 1, 2, 5

New Method
Description Displays a dialog box that allows the end-user to create a new ImageFile object that

contains one blank page.

Creating a new ImageFile object causes the new object to become active. If the
active ImageFile object is unsaved, the end-user is prompted to save it before the
new object is created.

No image file is associated with the object until you save it. The file type of the
new object is the same as the file type of the active object.

Usage ImageFileObject.New ([DisplayUIFlag])

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to select a source image file.
False (Default) — Does not display a dialog box.
If you specify True and the selected file is a multi-page
file, the user will be prompted to select the pages to
append.

Note: This method is not available when application is running as an embedded
server.

Parameter Data Type Description
58

Automation Lexicon
Remarks The New method has the following parameter:

Example 'This example creates a new image object.
'Create the image object
Dim App, Img As Object
Set App = CreateObject("Imaging.Application")
Set Img = App.CreateImageViewerObject(1)
'Call the image object New Method
Img.New

Ocr Method
Description OCRs all image file pages.

Usage ImageFileObject.Ocr

Remarks The Image file must be open. The Ocr method uses the OcrOutputFile and
OcrOutputFileType properties.

Example 'This example performs an OCR on an image object.
Dim App, Img As Object
Set App = CreateObject("Imaging.Application")
Set Img = App.CreateImageViewerObject(1)
Img.Open "d:\pcx.tif"
Img.Ocr

Open Method
Description Opens an image file in the parent application window. This associates an image file with the

ImageFile object. If a file is currently open, it should be closed before a new file is opened.
(See the Close Method).

The Imaging application has the focus after an Open. You can reset the focus
programmatically after an Open, if desired.

Usage ImageFileObject.Open(ImageFile,[IncludeAnnotation],[Page],
 [DisplayUIFlag])

Parameter Data Type Description

DisplayUIFlag Flag True — Displays a dialog box that allows the end-
user to create a new image file.
False (Default) — Does not display a dialog box.

Note: This method is unavailable when the application is running as an
embedded server.
59

Chapter 2
Remarks The Open method has the following parameters:

Example 'This example opens an image file named 5page.tif:
Img.Open "C:\images\5page.tif"

'This example opens the same file to page 4 with annotations
'displayed:
Img.Open "C:\images\5page.tif",TRUE,4

'This example opens a dialog box so the user can select a
'file to open:
Img.Open "",,,TRUE

'This example opens an Imaging Server 1.x file.
Img.Open "Image://nqa11\SYS:\tmp\3PAGES.tif", TRUE, 1

'This example opens an Imaging Server 1.x document.
Img.Open "Image://PATRIOTS\CABINET\DRAWER\FOLDER\doc1"

'This example opens an Execute360 Imaging document.
Img.Open"Imagex://sixpage"

See Also ApplicationObject.Edit.

Parameter Data Type Description

ImageFile String Name string of the ImageFile object to open.

IncludeAnnota-
tion

Flag True (Default)— The image has annotations that
are
displayed.
False — The image has annotations that are not
displayed.

Page Long Page number in the image file to display. This
parameter must be a constant, or use the ActiveP-
age property to specify the page that you want dis-
played when you open the file.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-
user to select a file to open.
False (Default) — Does not display a dialog box.
60

Automation Lexicon
Pages Method
Description Returns the Page or PageRange object for the ImageFile object.

Usage ImageFileObject.Pages(StartPage, EndPage)

Data Type Long.

Remarks If you specify one page number, this method returns a Page object. If you specify two page
numbers, this method returns a PageRange object. To return a range of pages, specify the
starting page number and ending page number. The first page number can be a variable,
but the second page number must be a constant.

The Pages method uses these parameters:

Example 'This example returns a Page object and a PageRange object.
Dim Page As Object
Dim PageRange As Object
Set Page = Img.Pages(1)
Set PageRange = Img.Pages(1,3)

Print Method
Description Prints the image file associated with the ImageFile object. You can optionally display a

dialog box to allow the end-user to select the print options.

Usage ImageFileObject.Print ([DisplayUIFlag])

Remarks The Print method DisplayUIFlag argument has the following settings:

Example 'This example prints the specified image file.
x = Img.Print

RotateAll Method
Description Rotates all ImageFile object pages. Pages are rotated clockwise in 90 degree increments.

Usage ImageFileObject.RotateAll

Example 'This example rotates all pages of the currently displayed image.
Img.RotateAll

Parameter Data Type Description

StartPage Long The starting page of the page range to be returned.

EndPage Long The ending page of the page range to be returned.

Setting Description

True Displays a dialog box that allows the end-user to select print file options.

False (Default) No dialog box is displayed.
61

Chapter 2
Save Method
Description Saves changes to the ImageFile object. If no image file is associated with the ImageFile

object, the SaveAs method is executed instead of the Save method.

Usage ImageFileObject.Save

SaveAs Method
Description Saves the ImageFile object as another ImageFile object. Copies its image file and renames it.

This method allows you to specify the new object's image parameters. If specified,
the file can be converted from one type to another. The current image file is closed
without being saved and the Save As object becomes the active image file. You can
optionally display a dialog box that allows the end-user to name the file for the first
time or select a file to overwrite.

Usage ImageFileObject.SaveAs (ImageFile, [FileType], [DisplayUIFlag])

Data Type String.

Remarks The SaveAs method has the following parameters:

The SaveAs method FileType argument settings are:

Parameter Data Type Description

ImageFile String The destination’s ImageFile object name string.

FileType Short The file type that you want to save the image as. This
number must be a constant. It must be present in the
command if the dialog flag option is used, even
though its value is ignored when the DisplayUIFlag is
set to True.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-
user to enter or select a filename and options for sav-
ing the file.
False (Default) — Does not display a dialog box.

Setting Description

1 TIFF

2 Not supported

3 BMP
62

Automation Lexicon
Example 'This example saves a file in TIF format.
Img.SaveAs "picture1.tif", 1

'This example opens a Save As dialog box so that the end-user can
'name the file for the first time or overwrite an existing file:
Img.SaveAs "", 0, True

SaveCopyAs Method
Description Saves a copy of the ImageFile object as another ImageFile object. You may specify the

FileType of the destination file. The FileType can be TIFF or BMP.

This method allows you to specify the new object’s image parameters. If specified,
the file can be converted from one type to another. The current image file remains
the active image file. This method can only be used after launching the embedded
server application in a separate window.

Usage ImageFileObject.SaveCopyAs (ImageFile, FileType, DisplayUIFlag)

Data Type String.

Remarks The SaveCopyAs method has the following parameters:

Update Method
Description Updates the ImageFile object embedded within the container application with the current

data from the server application.

This method can only be used after launching the embedded server application in a
separate window.

Usage ImageFileObject.Update

Parameter Data Type Description

ImageFile String The destination’s ImageFile object name string.

FileType Short The image file type that you want to save the image
as. This number must be a constant. It must be pres-
ent in the command if the dialog flag option is used,
even though its value is ignored when the DisplayUI-
Flag is set to True.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-
user to enter or select a filename and options for sav-
ing the file.
False (Default) — Does not display a dialog box.
63

Chapter 2
Page Object
A Page object represents a single page in an ImageFile object. Page objects can only
be accessed by using the Pages method of the parent ImageFile object.

Page Object Properties
The following table lists the Page object properties.

Application Property
Description Returns the Application object. This is a read-only property.

Usage PageObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Img As ObjectDim Parent As ObjectSet Parent =
 å Img.Pages(1).Application

CompressionInfo Property
Description Returns this page’s compression information. This is a read-only property.

Usage PageObject.CompressionInfo]

Data Type Long.

Page Object Properties

Property Description

Application Returns the Application object.

CompressionInfo Returns the page’s compression information.

CompressionType Returns the page’s compression type.

Height Returns the page’s height.

ImageResolutionX Sets or returns the page’s horizontal resolution.

ImageResolutionY Sets or the returns page’s vertical resolution.

Name Returns the page number of this page.

PageType Returns the page’s image type.

Parent Returns the parent of the Page object.

ScrollPositionX Sets or returns this page’s horizontal scroll position.

ScrollPositionY Sets or returns this page’s vertical scroll position.

Width Returns the page’s width.
64

Automation Lexicon
Remarks The CompressionInfo property settings are:

Remarks Image files that do not have a compression type of JPEG will have a value between 1 and
63. This value is a combination of the values of 1 to 32. For JPEG files, the value is from 64
to 16384, and is only one of these values.

Example 'This example returns the page's compression information.
x = Img.Pages(1).CompressionInfo

Settin
g

Description

0 No compression options set. Only applicable to uncompressed image files.

1 EOL (Include/expect End Of Line). Each line is terminated with an end-of-
line bit. Not used for JPEG compression.

2 Packed Lines (Byte align new lines). Not used for JPEG compression.

4 Prefixed EOL (Include/expect prefixed End Of Line). Each strip of data is
prefixed by a standard end-of-line bit sequence. Not used for JPEG com-
pression.

8 Compressed LTR (Compressed bit order, left to right). The bit order for the
compressed data is the most significant bit to the least significant bit. Not
used for JPEG compression.

16 Expanded LTR (Expanded bit order, left to right). The bit order for the
expanded data is the most significant bit to the least significant bit. Not
used for JPEG compression.

32 Negate (Invert black and white on expansion). Indicates the setting of the
Photometric Interpretation field of a TIFF file. Not used for JPEG compres-
sion.

64 Low Resolution/High Quality (JPEG compression only).

128 Low Resolution/Medium Quality (JPEG compression only).

256 Low Resolution/Low Quality (JPEG compression only).

512 Medium Resolution/High Quality (JPEG compression only).

1024 Medium Resolution/Medium Quality (JPEG compression only).

2048 Medium Resolution/Low Quality (JPEG compression only).

4098 High Resolution/High Quality (JPEG compression only).

8196 High Resolution/Medium Quality (JPEG compression only).

16392 High Resolution/Low Quality (JPEG compression only).
65

Chapter 2
CompressionType Property
Description Returns this page’s compression type. This is a read-only property.

Usage PageObject.CompressionType[=value]

Data Type Short.

Remarks The CompressionType property settings are:

Example 'This example returns this page's compression type.
x = Img.Pages(1).CompressionType

Height Property
Description Returns this page’s height in pixels. This is a read-only property.

Usage PageObject.Height

Data Type Long.

Example 'This example returns this page's height in pixels.
x = Img.Pages(1).Height

Setting Description

0 Unknown

1 No Compression

2 Group 3 1D FAX

3 Group 3 Modified Huffman

4 PackBits

5 Group 4 2D FAX

6 JPEG

7 Reserved

8 Group 3 2D FAX

9 LZW
66

Automation Lexicon
ImageResolutionX Property
Description Sets or returns this page’s horizontal resolution, in dots-per-inch. An error occurs when a

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.

Usage PageObject.ImageResolutionX [= value]

Data Type Long.

Example 'This example sets this page's horizontal resolution.
Img.Pages(1).ImageResolutionX = 200

'This example returns this page's horizontal resolution.
XRes = Img.Pages(1).ImageResolutionX

ImageResolutionY Property
Description Sets or returns this page’s vertical resolution, in dots-per-inch. An error occurs when a

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.

Usage PageObject.ImageResolutionY [= value]

Data Type Long.

Example 'This example sets this page's vertical resolution.
Img.Pages(1).ImageResolutionY = 200

'This example returns this page's vertical resolution.
YRes = Img.Pages(1).ImageResolutionY

Name Property
Description Returns the page number of the page in the ImageFile object. This is a read-only property.

Usage PageObject.Name

Data Type Long.

Example 'This example returns the page number of the page in the
'ImageFile object.
x = Img.Pages(1).Name
67

Chapter 2
PageType Property
Description Returns the page’s image type. This is a read-only property.

Usage PageObject.PageType

Data Type Short.

Remarks The PageType property settings are:

Example 'This example returns the page's image type.
x = Img.Pages(1).PageType

Parent Property
Description Returns the parent of the Page object. This is a read-only property.

Usage PageObject.Parent

Data Type Object.

Example 'This example returns the parent of the Page object.
x = Img.Pages(1).Parent

ScrollPositionX Property
Description Sets or returns this page’s horizontal scroll position, in pixels. This is a read/write property.

Usage PageObject.ScrollPositionX [=value]

Data Type Long.

Example 'This example sets this page's horizontal scroll position.
Img.Pages(1).ScrollPositionX = 200

'This example returns this page's horizontal scroll position.
xpos = Img.Pages(1).ScrollPositionX

Setting Description

1 Black and White

2 Gray 4

3 Gray 8

4 Palettized 4

5 Palettized 8

6 RGB 24
68

Automation Lexicon
ScrollPositionY Property
Description Sets or returns this page’s vertical scroll position, in pixels. This is a read/write property.

Usage PageObject.ScrollPositionY [=value]

Data Type Long.

Example 'This example sets this page's vertical scroll position.
Img.Pages(1).ScrollPositionY = 200

'This example returns this page's vertical scroll position.
ypos = Img.Pages(1).ScrollPositionY

Width Property
Description Returns this page’s width, in pixels. This is a read-only property.

Usage PageObject.Width

Data Type Long.

Example 'This example returns this page's width in pixels.
x = Img.Pages(1).Width

Page Object Methods
The following table lists the Page object methods.

Page Object Methods

Method Description

Delete Deletes the page.

Flip Rotates the page 180 degrees.

Help Displays online Help.

Ocr OCRs Image Page.

Print Prints the page.

RotateLeft Rotates the page counterclockwise 90 degrees.

RotateRight Rotates the page clockwise 90 degrees.

Scroll Scrolls the page.
69

Chapter 2
Delete Method
Description Deletes the specified page from the active object. After deleting a page, the next page is

displayed (if one exists). Otherwise, the previous page is displayed.

Usage PageObject.Delete

Example 'This example deletes the specified page.
Img.Pages(1).Delete

Flip Method
Description Rotates the specified page 180 degrees. This change becomes permanent when the image

file is saved.

Usage PageObject.Flip

Example 'This example flips the page.
Img.Pages(1).Flip

Help Method
Description Displays the Imaging online Help table of contents.

Usage PageObject.Help

Ocr Method
Description OCRs the image page.

Usage PageObject.Ocr

Print Method
Description Prints the page.

Usage PageObject.Print

Example 'This example prints the page.
x = Img.Pages(1).Print

RotateLeft Method
Description Rotates the page 90 degrees counterclockwise. This change becomes permanent when the

image file is saved.

Usage PageObject.RotateLeft

Example 'This example rotates the page 90 degrees to the left.
Img.Pages(1).RotateLeft
70

Automation Lexicon
RotateRight Method
Description Rotates the page 90 degrees clockwise. This change becomes permanent when the image

file is saved.

Usage PageObject.RotateRight

Example 'This example rotates the page 90 degrees to the right.
Img.Pages(1).RotateRight

Scroll Method
Description Scrolls the page.

Usage PageObject.Scroll Direction,ScrollAmount

Remarks The Scroll method uses the following parameters:

Example 'This example scrolls the page down 200 pixels.
Img.Pages(1).Scroll 0 200

Parameter Data Type Description

Direction Integer Direction in which to scroll the image:
0 — (Default) Scrolls down
1 — Scrolls up
2 — Scrolls right
3 — Scrolls Left

ScrollAmount Long Number of pixels to scroll the image
71

Chapter 2
PageRange Object
A PageRange object represents a range of consecutive pages in an ImageFile object.
A page range is a set of pages starting at the StartPage property and ending at the
EndPage property. PageRange objects can only be accessed by using the Pages
method of the parent ImageFile object.

PageRange Object Properties
The following table lists the PageRange object properties.

Application Property
Description Returns the Application object. This is a read-only property.

Usage PageRangeObject.Application

Description Object.

Count Property
Description Returns the number of pages in this range. This is a read-only property.

Usage PageRangeObject.Count

Data Type Long.

EndPage Property
Description Returns or sets the page number of the last page in the range. This is a read/write property.

Usage PageRangeObject.EndPage [=value]

Data Type Long.

PageRange Object Properties

Property Description

Application Returns the Application object.

Count Returns the number of pages in this range.

EndPage Returns or sets the page number of the last page in the
range.

Parent Returns the parent of the PageRange object.

StartPage Returns or sets the page number of the first page in the
range.
72

Automation Lexicon
Remarks This property setting is the number of the last page. The value of EndPage must be greater
than or equal to the value of StartPage.

Parent Property
Description Returns the parent of the PageRange object. This is a read-only property.

Usage PageRangeObject.Parent

Data Type Object.

Example 'This example returns the parent of the PageRange object.
x = Img.Pages(1,7).Parent

StartPage Property
Description Returns or sets the page number of the first page in the range. This is a read/write

property.

Usage PageRangeObject.StartPage [=value]

Data Type Long.

Remarks This property setting is the number of the first page. The value of StartPage must be less
than or equal to the value of EndPage.

PageRange Object Methods
The following table lists the PageRange object methods.

The Delete, Ocr, and Print methods of the PageRange object use the following
parameters:

PageRange Object Methods

Method Description

Delete Deletes the page range.

Ocr OCRs the page range.

Print Prints the page range.

Parameter Data Type Description

StartPage Long First page to be deleted.

NumPages Long Number of pages to be deleted, including the Start-
Page.
73

Chapter 2
Delete Method
Description Removes pages from the ImageFile object. After deleting a PageRange object, all page

ranges are invalid.

Usage PageRangeObject.Delete()

Example 'This example deletes the pages 1 through 3.
Img.Pages(1,3).Delete

Ocr Method
Description OCRs the page range.

Usage PageRangeObject.Ocr()

Example 'This example OCRs pages 2 through 6.
x = Img.Pages(2,6).Ocr

Print Method
Description Prints the page range.

Usage PageRangeObject.Print()

Example 'This example prints pages 1 through 5.
x = Img.Pages(1,5).Print
74

4.0 ■ 09/2008 ■
www.global360.com

	Contents
	About This Guide
	Purpose
	Prerequisites
	Related Information
	Support

	Chapter 1 - Adding Imaging Using Automation
	Overview
	Imaging Components
	Imaging Application
	Imaging Flow
	Imaging Preview

	Invoking Imaging for Windows
	Command Line Invocation
	OLE

	When to Use Automation
	The Object Hierarchy
	Application Object
	ImageFile Object
	Page Object
	PageRange Object

	Imaging Application Modes
	Automation Server Mode
	Embedded Server Mode
	Examples

	Demonstration Project
	View Modes
	Example
	The Automation From Excel Project

	Chapter 2 - Automation Lexicon
	Overview
	Application Object
	Application Object Properties
	Application Object Methods

	ImageFile Object
	ImageFile Object Properties
	ImageFile Object Methods

	Page Object
	Page Object Properties
	Page Object Methods

	PageRange Object
	PageRange Object Properties
	PageRange Object Methods

