Imaging for Windows®
Automation Guide

Imaging for Windows”

Automation Guide

Copyright© 1998-2008, Global 360, Inc.
www.global360.com

Disclaimer of Warranties and Limitation of Liabilities

Nothing contained herein modifies or alters in any way the standard terms and conditions of the
purchase, lease, or license agreement by which the product was acquired, nor increases in any way the
liability of the supplier of the software, its affiliates or suppliers (“the Supplier”). In no event shall the
Supplier be liable for incidental or consequential damages in connection with or arising from the use of
the product, the accompanying manual, or any related materials.

Software Notice

All software must be licensed to customers in accordance with the terms and conditions of any approved
and authorized license. No title or ownership of the software is transferred, and any use of the software
beyond the terms of the aforesaid license, without written authorization of the publisher, is prohibited.

Restricted Rights Legend

The Licensed Product and accompanying documentation are Commercial Computer Software and
documentation as defined under Federal Acquisition Regulations and agency supplements to them. Use,
duplication or disclosure by the U.S. Government is subject to the restrictions of these licensing terms and
conditions as prescribed in DFAR 227.7202-3(a) and DFAR 227.7202-4 or, as applicable, the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19. Manufacturer is

Global 360, Inc., One Lincoln Centre, 5400 LB] Freeway, Suite 300, Dallas, TX 75240, USA.

Microsoft and Windows are registered trademarks and Vista is a trademark of Microsoft Corporation in the USA and in
other countries.
Other product names mentioned in this guide may be trademarks or registered trademarks of their respective companies.

Contents

Imaging for Windows®
Automation Guide

About This Guide

Purpose x
Prerequisites x
Related Information x

Support x
1 Adding Imaging Using Automation

Overview 2

Imaging Components 3
Imaging Application 4
Imaging Flow 5
Imaging Preview 6
Invoking Imaging for Windows 7
Command Line Invocation 7
OLE 8
Embedded Image Files 9
Linked Image Files 9
When to Use Automation 10

The Object Hierarchy 11
Application Object 11
ImageFile Object 12

Page Object 12

PageRange Object 12

| Contents

Imaging Application Modes 13
Automation Server Mode 13
Embedded Server Mode 13
Examples 14

As an Automation Server Application 14
As an Embedded Server Application 18

Demonstration Project 20
View Modes 20

One Page 21

Thumbnail 22

Page and Thumbnails 23
Example 24

The Automation From Excel Project 25

Opening the Spreadsheet File 26

Opening and Displaying the Image File 27
Obtaining the Page Count 31

Rotating an Image Page 32

Setting the One Page View Mode 33

Setting the Thumbnail View Mode 34

Setting the Page and Thumbnails View Mode 35
Closing the Image File and the Imaging
Application 36

2 Automation Lexicon

iv

Overview 38

Application Object 38

Application Object Properties 38
ActiveDocument Property 40
AnnotationPaletteVisible Property 40
Application Property 40
AppState Property 40
DisplayScaleAlgorithm Property 41
Edit Property 41
FullName Property 42
Height Property 42
ImagePalette Property 42

Contents

ImageView Property 43
ImagingToolBarVisible Property 43
Left Property 44
Name Property 44
Parent Property 44
Path Property 44
ScannerlsAvailable Property 44
ScanToolBarVisible Property 45
ScrollBarsVisible Property 45
StatusBarVisible Property 46
ToolBarVisible Property 46
Top Property 46
TopWindow Property 47
Visible Property 47
WebToolBarVisible Property 47
Width Property 48
Zoom Property 48

Application Object Methods 48

CreatelmageViewerObject Method 49
FitTo Method 49
Help Method 50
Quit Method 50

ImageFile Object 50

ImageFile Object Properties 50
ActivePage Property 51
Application Property 51
FileType Property 51
Name Property 52
OCRLaunchApplication Property 52
OCROutputFile Property 53
OCROutputType Property 53
PageCount Property 53
Parent Property 53
Saved Property 53

ImageFile Object Methods 54
AppendExistingPages Method 55
Close Method 56
CreateContactSheet Method 56
FindOlIServerDoc Method 57

| Contents

Help Method 57
InsertExistingPages Method 57
New Method 58

Ocr Method 59

Open Method 59

Pages Method 61

Print Method 61
RotateAll Method 61
Save Method 62
SaveAs Method 62
SaveCopyAs Method 63
Update Method 63

Page Object 64
Page Object Properties 64

Application Property 64
Compressioninfo Property 64
CompressionType Property 66
Height Property 66
ImageResolutionX Property 67
ImageResolutionY Property 67
Name Property 67

PageType Property 68
Parent Property 68
ScrollPositionX Property 68
ScrollPositionY Property 69
Width Property 69

Page Object Methods 69

Delete Method 70

Flip Method 70

Help Method 70

Ocr Method 70

Print Method 70
RotateLeft Method 70
RotateRight Method 71
Scroll Method 71

Contents

PageRange Object 72

PageRange Object Properties 72
Application Property 72
Count Property 72
EndPage Property 72
Parent Property 73
StartPage Property 73

PageRange Object Methods 73

Delete Method 74
Ocr Method 74
Print Method 74

vii

About This Guide

This guide describes the Automation component of the

Global 360 Imaging for Windows® Developer Resources.
Automation enables you to access Imaging objects
programmatically using Visual Basic or another application that
supports Automation.

In this Chapter

PUIDOSE .ot X
Prer@qUISIEESoooiiiiii et X
Related INformation...........cooeoiiiiiiicee e X

SUPPOIT e X

| About This Guide

Purpose

Prerequisites

The Automation Guide describes the Automation features of
Global 360 Imaging for Windows".

To use this product, you should be familiar with the Microsoft®
Windows® environment. If you are using a printer, scanner, or
TWAIN-compliant device, you should also know how to connect
and operate it.

If you plan to access documents residing on Global 360 Imaging
Server (1.x) or an Execute360 server, you should be familiar with
navigating document databases in those environments.

Related Information

Support

For updated product information and general information about
Imaging for Windows, visit our Web site at

www.global360.com

Should you have questions regarding Imaging for Windows, or
problems with your system after installation, consult your customer
support representative.

For technical support, visit our Web site at

www.global360.com

http://www.global360.com
http://www.global360.com

1

Adding Imaging Using Automation

This chapter provides an overview of Imaging for Windows® and
explains how to use Automation to image-enable your
applications. It describes the object hierarchy of the Imaging
application and explains how the Imaging application can function
as an Automation server application or an Embedded server
application. It also walks you through a sample project to help you
get started.

In This Chapter

OVEIVIEW ..t 2
IMaging ComMPONENTSvviiiiiiiiiie e 3
Invoking Imaging for Windowsccccooeiiiiiiiiiiiis 7
When to Use Automation ... 10
The Object Hierarchycoooviiiiiiieee e, 11
Imaging Application Modescccoiviiiieiiiiiieieieee, 13

Demonstration ProjeCtoooiiiiiiiiiiiieeieee e 20

| Chapter 1

Overview

Components are software
modules that can be “plugged
into” applications from other
vendors. They provide end
users with a specific set of
additional functions and
capabilities.

Imaging for Windows® features a rich Automation interface that
provides programmatic access to the internal services of the
Imaging application.

Automation is a powerful way to image-enable your application. It
enables you to control the Imaging application programmatically
from your application and to provide your users with the image
display and manipulation functions that are contained within the
Imaging application. You, in effect, make the Imaging application
a fully functional, tested, and trusted component of your application.

Note: You cannot use Automation to control the Imaging
Preview and Imaging Flow applications.
When the Imaging application is launched through
Automation, it has a Single Document Interface (SDI). PDF
files cannot be displayed.

In addition to automating the Imaging application from your
programs, you can also automate it from other Automation-
capable programs, such as Microsoft® Word and Excel.

The Imaging application implements Automation as a full object
model, similar to the Automation model of Microsoft Word and
Microsoft Excel.

The object hierarchy starts with the Application object, continues
with an ImageFile object and one or more Page objects, and then
concludes with a Page Range object. Each object has its own set
of properties and methods.

Note: Chapter 2 in this guide describes the properties and
methods of each object.

Adding Imaging Using Automation

The Automation demonstration project described later in this
chapter shows you how to use Automation in Excel to:

® Invoke the Imaging application.
® Display an image.

= Select the view mode.

® Rotate the image.

= Obtain the number of pages in the image file.

Imaging Components

Imaging for Windows lets your users access and control paper-
based information directly on their computers. With it, users can
view, manipulate, annotate, print, file, and share documents they
used to manage as cumbersome paper files.

The following sections describe the components of Imaging for
Windows.

| Chapter 1

Imaging Application

The Imaging application is the main component of Imaging for
Windows. It enables users to scan, view, annotate, manipulate, and
store faxes, paper documents, and electronic images.

File Edit Veew Fage Zoom Took Annctation Window Help

Dwd & ‘R oo &80 0 HEE s .|
250 AB e va F% <[|p @\

l--b|

ez omced 20 LF
F«qu.prmﬂ H420% Pagelof2

Adding Imaging Using Automation

Imaging Flow

Imaging Flow enables users to automatically capture, process, and
output image files. An intelligent and editable procedure — called
a flow — defines and controls the work Imaging Flow performs.

I Unitied - Imaging e
File Edit View Capture Process Output Melp
D B & r n W

Cos MPREDYR B P SEB M

Caghan Froem Peocett Quipid Ta
B— 3 rebn
= Convert Fie =

Mad Riecapeent

@ Uge th flow's scan seltinga
[Coko acle =| [sonngs..

Fages contaring best with color pechuses

o Ul bormait: document hesde

O Daplay TSN sl intednce

|| Prompt bor mces pages
7] Evusphecs sl [ors side, thn i ot

| Chapter 1

Flow tools included within each flow perform specific functions.
They can:

= Capture images from:
— Scanners.
— MAPI-compliant in-boxes.
— Local and network folders.

= Process images by:
— Converting them from one file type to another.
— Applying compression.
— Enhancing their appearance.
— Permitting their review.
— Converting them to text.
— Deleting specified pages.

— Entering information about an image document while the
flow is processing.

— Running a custom process.
® Qutput images by:
— Posting them to Exchange folders.
— Saving them to local or network folders.

— Saving them to Execute360 Imaging or Imaging (1.x)
servers.

— Printing them.
— Sending them to others via e-mail.

— Running a custom process.

Imaging Preview

Imaging Preview is a light version of the Imaging application. It
lets users view image files quickly and, if necessary, load them into
the Imaging application for editing.

Adding Imaging Using Automation

Invoking Imaging for Windows

Imaging for Windows includes several development tools and
methods that let you add Imaging functions to your applications.
The development tools and methods include:

= Command line invocation
= QOLE

" Automation

Command Line Invocation

You can invoke the Imaging application using its command line.
Command line invocation is the most simple but least powerful
way to implement Imaging functions in your application.

Because the command line can accept a fully qualified image file
name, you can use standard Shell functions within your
application to invoke the Imaging application with an image on
display.

Within your call to the Shell function, include the path and file
name of the Imaging application along with the path and file
name of the image file you want it to display.

For example, if you are developing under Imaging, you can use
the following statement to invoke the Imaging application and
display an image file:

Shell("c:\Program Files\Common Files\
Global 360\Imaging\Imaging.exe c:\Quote.tif", 1)

Employing the command line interface does not make the
Imaging application a full-fledged component of your application.
The command line interface does not give you the opportunity to
manipulate the application or the image after it is displayed.

| Chapter 1

OLE

You can use standard OLE functions to embed and link image files
in your application and other applications, such as Microsoft
Word, Excel, Access, and SQL Server. OLE lets you add a subset
of Imaging functions to your application. It is useful when you
want to add Imaging functions with an absolute minimum of
coding.

Using a container control such as that provided by Visual Basic,
you can add image files as insertable objects within your
application at design time. Image files can be embedded or linked.
For example, you can use the Visual Basic OLE Container control
to easily embed or link image files in your application.

As an alternative, you can use the container control to create a
placeholder in your application for image files that will be added at
run time. Set the appropriate properties or provide end users with
drag-and-drop capability so they can select image files for display
at run time.

OLE does not make the Imaging application a full-fledged
component of your application. OLE does not give you the
opportunity to manipulate the application or the image after it is
displayed.

Users can edit embedded images within your application and

linked images within the Imaging application.

Your application is the container, while the Imaging application is
the server. Users can edit and open embedded or linked image
files, as described in the following sections.

Adding Imaging Using Automation

Embedded Image Files

When you embed an image file in your application, the
application stores the image data within it.

When end users edit an embedded image file, it becomes “in-
place activated,” causing your application to display a subset of the
Imaging application menus. The menus provide access to Imaging
functions that let users edit the activated image file in-place, that
is, within your application.

When end users open an embedded image file, the Imaging
application appears with the embedded image displayed within it.
Changes users make to the image in the Imaging application also
appear on the linked image in your application. If desired, users
can save a copy of the image to another file by clicking SaveAs on
the File menu.

Linked Image Files

When you link an image in your application, the image data
remains external to your application. Your application stores only a
reference to the image file.

When end users edit or open a linked image file, the Imaging
application appears with the image file displayed. This enables
them to perform the full range of Imaging functions on the
displayed image file.

In-place activation is not available because the linked image file
may also be available to other containers (referential integrity).

As in the case of embedded image files, changes users make to the
image in the Imaging application also appear on the linked image
in your application.

| Chapter 1

When to Use Automation

10

Automation lets you add Imaging functions to your application by
making the Imaging application a full-fledged component of your
application.

Automation is useful when you want images to be displayed in a
window that is separate from your application and when you want
to control the Imaging application from your application.

Your application can control the state of the Imaging application as
well as manipulate the displayed image but your application cannot
respond to events that occur when users perform Imaging
operations.

Depending on the degree of control you want to exert,
automating the Imaging application from your application can be
accomplished with a minimal or substantial amount of coding.

Example
Imaging Flow, a component of Imaging for Windows,
demonstrates a good example of Automation.

The Review flow tool invokes the Imaging application to permit
users to review image files as they are being processed by the
current flow.

At flow design time, the author can set Review tool options that
manipulate the Imaging application as well as the image it displays.
These options include:

= Whether to view image pages, thumbnails, or both.

® The size and position of the Imaging application window.
® The zoom setting to apply to images.

= Whether to open image files as read only.

= Whether to scale black-and-white images to gray.

Adding Imaging Using Automation

The Object Hierarchy

The object model of the Imaging application includes:
= One top-level object, called the Application object;
= One document object, called the ImageFile object; and

= Two objects that support the ImageFile object, called
the Page object and the PageRange object.

Application Object |

4>< ImageFile Object ‘
—»{ Page Object ‘
—>‘ PageRange Object |

The first time you start the Imaging application, it adds the
Application object to the Windows® registry. Imaging
Automation exposes only the Application object for creation.
Other programmable objects can be created by referencing the
Application object.

Each object in the hierarchy has its own set of properties and
methods. Refer to Chapter 2 for a description of the properties
and methods of each object.

Application Object

Use the Application object to create an instance of the Imaging
application and to control it. The Application object controls
every other object you create as well as the environment of the
application, such as the application’s size and position.

11

| Chapter 1

ImageFile Object

Page Object

The ImageFile object represents an image document file. Use it to
specify the name of an image file and to provide basic filing
functions such as open, save, close, print, insert, update, and
append. Use it also to provide image manipulation functions such
as rotate, create contact sheet, and perform OCR.

Each Page object represents an image document page. Use it to
manipulate the individual pages of an image file and to provide
functions such as delete, flip, print, rotate, scroll, and perform
OCR.

PageRange Object

12

The PageRange object represents a range of consecutive pages
within an ImageFile object — starting at the StartPage property
and ending at the EndPage property. Use it to manipulate a range
of pages and to provide page manipulation functions such as
delete, print, and perform OCR.

Note: Automation is not aware of the actions performed by
users within the Imaging application. The objects known
to Automation remain in the state they were in when last
affected programmatically.

In other words, if users change a displayed object, Auto-
mation does not update that object within its Application
object. For example, if users change the active page,
Automation does not update the ActivePage property.

However, properties and methods are available that let
you determine whether a change has occurred. At your
option, you can use them to update the corresponding
objects known to Automation.

Adding Imaging Using Automation

Imaging Application Modes

You can use the AppState
property of the Application

object to determine whether

the Imaging application is
running as an Automation

server or an Embedded server.

The Imaging application can function as an Automation server
application or as an Embedded server application.

The following sections describe each mode and include examples.

Automation Server Mode

In every version of Imaging for Windows, the Imaging application
can function as a stand-alone Automation server application.

When automated in this mode, the Imaging application is directed
to display and manipulate an image file that is external to your
application; such as a file resident on a local or network drive.
Your program uses the properties and methods of the Imaging
Automation objects to control the Imaging application and to
display and manipulate the image.

The demonstration project, described later in this chapter, is an
excellent example of using the Imaging application as an
Automation server application.

Embedded Server Mode

Imaging for Windows has several Imaging Automation properties
and methods to manipulate an embedded image document object.

When automated in this mode, the Imaging application is directed
to manipulate an image document object that has been embedded
into your program using, for example, the OLE Container control
of Visual Basic.

13

| Chapter 1

Examples

14

Depending on how you code your application, you can
manipulate the embedded image document in-place or within the
Imaging application window (refer to the next section for
examples).

Note: The Automation interface allows the in-place activation of
embedded objects only. It does not permit the in-place
activation of linked objects.

This section contains examples that show how to automate the
Imaging application as a stand-alone Automation server
application and as an Embedded server application.

Note: The example that demonstrates automating the Imaging
application as an Automation server application is more
extensive because:
® The principles behind automating the Imaging application

are similar no matter which mode is used.

= Use of the Imaging application as an Automation server
application is more prevalent.

As an Automation Server Application

This example shows how to use Visual Basic to automate the
Imaging application as an Automation server application. (Refer
to the code snippet at the end of this section.)

Automating the Imaging application involves a series of
programming steps that begin with the creation of Application and
Image File objects and continue with the application control and
image manipulation functions you want to perform.

Adding Imaging Using Automation

To create the Application and Image File Objects

1 Declare the object variables that will contain references to the
Application and Image File objects.

2 Use the Set statement and the CreateObject function of
Visual Basic to create and return a reference to the Application
object.

After you create an object,
you can access the properties
and methods of the object 3 Use the Set statement of Visual Basic and the

using the object variable. CreateImageViewerObject method of the Application
object to create and return a reference to the ImageFile object.

With the Application and ImageFile objects instantiated, you
can now manipulate the Imaging application as well as any
image the application displays.

To manipulate the Imaging Application

1 Set the TopWindow property of the Application object to
True to have the Imaging application window remain on top
of all other applications that may be running.

2 Invoke the Open method of the ImageFile object to open and
display an image file. In your call to the Open method, pass the
tollowing parameters:

ImageFile — The path and file name of the image file to
display

IncludeAnnotation (optional) — True or False: whether to
display annotations that may be present in the image file

Page (optional) — The number of the image page to display

DisplayUIFlag (optional) — True or False: whether to
display the Open dialog box, which lets end users select the
file they want to display

15

| Chapter 1

Now that an image is open and on display, you can manipulate
it. The following paragraphs provide some examples.

— Invoke the RotateLeft method of the Page object to rotate
page 1 of the image file 90 degrees to the left. Keep in mind
that there is one Page object for each image page in the file.

— Use the Height property of the Page object to assign the
height of page 1 to the local variable TngPageHeight.

— Invoke the Print method of the PageRange object to print
pages 1 and 2 on the default printer.

A PageRange object . . .
represents a range of — Set the ActivePage property of the ImageFile object to 2 to

consecutive pages within an display page 2 of the image file.

ImageFile object.
g) To close the Image File and exit the Application

1 Invoke the Close method of the ImageFile object to close the
image file.

2 Invoke the Quit method of the Application object to exit the
application.

3 Set the object variables to Nothing to free system resources.

16

Adding Imaging Using Automation

'Declare variables
Dim objApp As Object
Dim objImg As Object
Dim vntPrtRange As Variant
Dim TngPageHeight As Long

'Create the Application object (Standard VB call)
Set objApp = CreateObject("Imaging.Application™)

'Create the ImageFile object
Set objImg = objApp.CreatelmageViewerObject(1)

'Set the application's TopWindow property to TRUE (stay on top)
objApp.TopWindow = True

'Call the ImageFile object Open Method to display page 1 of myimage.tif
objImg.0Open "c:\images\myimage.tif", True, 1, False

'Create and rotate one Page object
objImg.Pages(1l).Rotateleft

'Return the height of the image from the Page object
TngPageHeight = objImg.Pages(1l).Height

'Create a PageRange object and print pages 1 and 2
vhtPrtRange = objImg.Pages(1,2).Print

'Display page 2 of the image
objImg.ActivePage = 2

'Close ImageFile object and quit the application
objImg.Close
objApp.Quit

'Release system resources
Set objApp = Nothing
Set objImg = Nothing

17

| Chapter 1

18

Methods Not Available in Automation Server Mode
You cannot use the following methods when the Imaging
application is functioning as an Automation server application:

= SaveCopyAs method of the ImageFile object
= Update method of the ImageFile object

As an Embedded Server Application

The following sections demonstrate how to automate the Imaging
application as an Embedded server application. The examples
assume you are embedding an image document object into a
Visual Basic application using the OLE Container control.

Example 1
In this example, the Imaging application displays the embedded
image document in a separate window for editing.

Set objApp = CreateObject("Imaging.Application")

Set objImg = objApp.CreatelmageViewerObject(1)
oleImg.CreateEmbed("", "Imaging.Document")
olelImg.DoVerb vbOLEOpen

objImg.InsertExistingPages "Test.tif", 1, 1, 1, False

Example 2

In this example, the Imaging application is in-place active and
displays a subset of its menus within your application. The menus
provide access to functions that let users edit the image document
object “in-place” — that is, within your application.

Set objApp = CreateObject("Imaging.Application")
oleImg.CreateEmbed("", "Imaging.Document")
olelmg.DoVerb vbOLEShow

Set objImg = objApp.CreatelmageViewerObject(1)
objImg.InsertExistingPages "Test.tif", 1, 1, 1, False

Adding Imaging Using Automation

Example 3

In this example, the Imaging application displays the embedded
image document in an instance of the Imaging application that is
already running.

oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEOpen

Set objApp = CreateObject("Imaging.Application")
Set objImg objApp.CreatelmageViewerObject(1)

Properties and Methods Not Available in Embedded Server
Mode

You cannot use the following properties and methods when the
Imaging application is functioning as an Embedded server
application:

= Edit property of the Application object
= Height and Width properties of the Application object

® ImageView property of the Application object (if the
application is in-place active)

= Left property of the Application object

= Top property of the Application object

= Close method of the ImageFile object

= FindOIServerDoc method of the ImageFile object
= New method of the ImageFile object

= Open method of the ImageFile object

= Quit method of the Application object (if the application is in-
place active)

= SaveAs method of the ImageFile object

19

| Chapter 1

Demonstration Project

This section demonstrates how
to automate the Imaging
application from Microsoft
Excel.

While a wide-ranging dis-
cussion of every Imaging
function is beyond the scope of
this chapter, the information
presented here is sufficient to
get started.

The demonstration project was
developed using Microsoft
Visual Basic for Applications
and Excel.

Even if you are not going to
automate the Imaging
application, you'll find the
section in this chapter on View
Modes useful.

View Modes

20

To help you use Automation to image-enable your applications, a
demonstration project — called Automation From Excel — shows
you how to:

= Invoke the Imaging application and open an image.
= Obtain the page count.

= Rotate an image page.

= Set the desired view mode.

= Close the image and the application.

Note: Chapter 2 of this guide describes the properties and
methods of each Imaging Automation object.

Before walking through the demonstration project, read the
tollowing section, which describes the view modes of the Imaging
application.

The Imaging application has three view modes that enable users to
view and work with image files. Each view mode has its own set
of advantages and capabilities.

The ImageView property of the Application object enables you
to invoke — most likely in response to user input — any one of
the three view modes. You should consider making view mode
selection available to your users when automating the Imaging
application.

The following sections describe the view modes.

Adding Imaging Using Automation

One Page

The One Page view mode lets users display image files one page at
a time. It lets users display image pages in the entire window while
maintaining complete access to the menus, toolbars, and functions
of the application.

HeEﬂHthezmnTnnkh-mﬁmWrdml-Hp =Ll ES
DEd & 1@ - QAQOATEAE ™ - |
2 %2 AR oa #£% 4 B ([@8E

-

(L]

[Chapte 1

Basic Imaging Concepts

The fallewing memon desrbey wmr bune: Imaging: for Windown
W isDEE il TR

What is Imaging?
Imagng na procos thet e compoicy sofrney 8o corair, modif
and procen dhecimn mmapr Typscdl imaging opserateons inc bl E
& isning tew photagrpbe. of dwisg and sving the rees
i am ewage B,
o Deploymyg mages veng ecbngees vsch n thembend
R, magnificsuen, masnon, sd na 1o e
w Sending inuge documeni by e-mul
o Sbbag stholalens 1 g

® Perinrmeng sherirone: Schianep ™ of imsges 5o muky thim saner
I VR

Types of Images L3
An image in an ghctmri: rpemswistion of 4 boa docemant, &
peiogEaph. & e drvwnng. or sther graphecal mformanon. You
£an create un mmage by wanning o printed gage, 3 photograph, o
dnrwing; of by covsting an g with 3 dnwng of grghic-deegs
jogfam

Bl ~oOma € et 0 & &
For Help, press F1 T5% PageZofd

21

| Chapter 1

22

Thumbnail

The Thumbnail view mode lets users display image files as a series
of thumbnail images — one for each image page. It lets users:

= View multiple image pages simultaneously.
= Rearrange pages using drag and drop.
= Delete pages.

® Drag and drop pages to and from other applications that
support drag and drop functionality.

Keep in mind that some Imaging functions — such as annotation
and zoom — are not available in this mode because they are not
appropriate for use on such small images.

DFEd & 2@ o= QAATBE [
O3 2L BB um F% @F B EHEE

gn:axmnﬂtumlﬁﬂi‘ﬁﬁﬂ
For Help, press F1 5% 1of d pages selected

Adding Imaging Using Automation

Page and Thumbnails

The Page and Thumbnails view mode is a combination of the first
two view modes. It enables users to display image files one page at
a time and as series of thumbnail images — one for each image
page in the file.

This view mode lets users perform Imaging tasks that are available
to both the One Page view mode and the Thumbnail view mode.

B tr iem view Page foom Teow Asnctation Widow beeip i=join]
D#¥W & ' w@ -~ RO FEHE »mx -
BAde AE WG oe F% 8- | BBl

4--1-|

|t

Basic Imaging Concepts
I — -
oyl vty

What is Imsging?

I B ¢ e e s g sl s ey, ek,

P L T I R e e L

o Ty bn, sk ol i bt el g W
[eT—

w [eoplivemy riages sy b Dot om b o0 sl
A, B, e, il a5

* trmdeg smagr ko wsees by sl

by e b e

- sy ol R
e

Typas of lmages
il gy - ol + 5
Pt . & g 7 4t pinginal b et B
e B
Adrwrag. o by s manng i mmagn ek 4 ey o gropibs Semgn
P,

Mr* Omcedwi®DF LS|
For balp, powas 13 X% 2 of & pages selactud - page] chown

23

| Chapter 1

Example

24

Users of Excel may want to display and manipulate an image file
referenced within a spreadsheet.

Scenario

In her role as a product manager for a major computer company,
Eileen regularly uses Microsoft Excel to create product
configurations of computers sold on contract to government
agencies.

After she completes a configuration spreadsheet, she typically
submits it to review via e-mail. In the past, several reviewers have
requested that she also include a scanned copy of the contract.

At a recent employee meeting, Eileen asked whether her reviewers
could display a scanned contract from Excel. Knowing that
Imaging for Windows is on every desktop in the company, you
told her that you could automate the Imaging application from
Excel to give her reviewers quick access to a scanned contract, or
any other image file for that matter.

All Eileen needs to do is:
1 Scan the contract using Imaging for Windows.

2 Import your code module into her Excel spreadsheet.

3 Enter the path and file name of the scanned contract in Cell A1l
of the spreadsheet.

4 Send both the image file and the spreadsheet file to her

reviewers.

Adding Imaging Using Automation

The Automation From Excel Project

The file names for the
Automation From Excel
project are
ImagingAutomation.xls,
and Facc.tif.

The Automation From Excel project demonstrates:

= Invoking the Imaging application and opening an image from
Excel.

® Obtaining the page count.

= Rotating an image page.

= Setting the desired view mode.

® (Closing the image and the application.
The project consists of the following files:

ImagingAutomation.xls — A sample spreadsheet that contains
the AutoFromExcel.bas code module.

Facc.tif — A sample TIFF image file that simulates the title page
of a government contract.

The AutoFromExcel.bas code module contains the following
macros:

f Initialize App() — Initializes the Imaging application.
s_DispImg() — Displays the image file.

s_GetPagecount() — Obtains the number of pages in the image
file and displays it in a worksheet cell.

s_RotateImg() — Rotates the image 90 degrees to the left.

s_ViewSingle() — Places the Imaging application in the One
Page view mode.

s_ViewThumbnails() — Places the Imaging application in the
Thumbnail view mode.

s_ViewThumbAndSingle() — Places the Imaging application
in the Page and Thumbnails view mode.

s_CloseImg() — Closes the image file and exits the Imaging
application.

25

| Chapter 1

26

The AutoFromExcel.bas code module uses the following
Automation methods to provide the Imaging functions:

Open method (ImageFile object) — Opens the image file in the
Imaging application.

CreateImageViewerObject method (Application object) —
Creates and returns an ImageFile object.

RotateLeft method (Page object) — Rotates the image 90
degrees counterclockwise.

Close method (ImageFile object) — Closes the ImageFile
object.

Quit method (Application object) — Exits the application.

Opening the Spreadsheet File

Start Excel and then open the ImagingAutomation.x1s file. The
sample spreadsheet appears.

Reagy | 7

E H) - [u A s lagingftomation [Compatibilit.. M _ =
LSE)
- Home Inpert | Page Lay | Formula:| Data | Review | View | Develops| &) = = X
Pt -l el s i e) s
;Iﬁ! Wk o [Algnement Number Shies Cells a- #-
™ 7| [E A i el el e PP
Chipboard = Font s Editing
G‘ Security Waming Macros have been disabled. Optiens.. Ly
| Al - (3 £ | c\imaging\Sample | B
T 5 e e T e ._F._...]i
1 [UmagingiSambie Code'Autornation\FACT tif
Ext,
2 |Model Number Comp No, Description Oty Price Price
3 SWDX.-233 SWIDX Workstation 233MHE MMX
4 D-P-233 233MHz System Unit 15121 $1.239
5 Di-58KE Windows 98 Keyboard 1 589 583 |m
] D-HF 37 J7M HF Radio Adapler 1 5999 5399
T DH-EDO-32 32MB EDO Memory 4 5118 5558
B DX-4-VIDEQ 4MB Video DRAM 1 589 589
] C-MOKN-15 15" Monitor 1 5299 5245
10 DX-IDE-4GB 4 3GB IDE deive 2 51M89 5358
11 D¥-IDE-CD IDE CO-ROM 1 569 569
12 DH-MOUSE Mouse 1 bx] Lx]
13 DX-RCS-3T HF Controller Software 1 5299 5299
14 | Total 54,036

Adding Imaging Using Automation

Opening and Displaying the Image File
Give focus to Cell Al, which contains the path and file name of
the sample TIFF image file.

On the Tools menu, point to Macro and then click Macros. The
Macro dialog box appears.

— = = " tamation patibilit... M = alxl
o - i
cad

Home | Inped | Page Lay | Formula:| Dta | Review | View | Davtlops | & = = X

Bl el €3l Qi B =

| A g Mochde 1.8_Disgilmg | Step inka
=I:rnmﬂ.|.|bnuha'| sdstindule 1.5 _PindServerfioc
1 EI | Imagngautemation. v Maduin 1.5_GetPapeomunt

Imagngiutomabon. dsiodule 1.s_Rotsteimg

3 | ol |ImepngAutmatcn. dsiModue 1s_VewSngie

8 | bmagngiutomaben. s odule 1.s_Ven ThumbindSng
3|50 | ImagngAutomaton. dsModule 15 _Vies Thuminads
: |
5
[=
T 1
8 Mpres i | Al Oper Wirkbesoks E|
? Desripton
10
11
12
13 Cancel
14 | Tod —_—
15
16
17
W 4 kM| Shest]l - Shest? - Sheet3 73 40 ™
enter |3 Bz I —

Click the s_DispImg macro and then click Run.

When the macro runs, code in the General Declarations area
of the code module defines the object variables that contain
references to the Application and Image File objects.

Dim objApp As Object
Dim objImg As Object

27

| Chapter 1

Then, the s_DispImg() subroutine executes its code.

The s_DispImg() subroutine obtains the path and file name of
the image file to open from the active cell of the spreadsheet.
Then it assigns the path and file name to the strCurrentFile
local variable.

Sub

Open

End

s_DispImg()

Dim strCurrentFile As String
Dim strCurrentImageName As String

'Get file name to display from spread sheet
strCurrentFile = ActiveCell.Value

'"If the Application object not created, create it.
If objApp Is Nothing Then
If f_InitializeApp() = False Then 'Continue if successful
Exit Sub
End If
End If

'Make the Imaging application on-top.
objApp.TopWindow = True

On Error Resume Next "If no file is open.
'Get the name of the open Image file.
strCurrentImageName = objImg.Name

On Error GoTo 0 'Reset error handler

If strCurrentImageName <> "" Then
"Always close existing image file before opening a new one.
objImg.Close

End If

On Error GoTo OpenlmageMethodError
'Open the Image file in the ActiveCell
objImg.0Open strCurrentFile

Exit Sub
ImageMethodError:
sMsg = "Error => " & Str$(Err.Number) & " " & Err.Description

MsgBox (sMsg)
'Close the Imaging application
s_Closelmg

Sub

28

Adding Imaging Using Automation

Next, the subroutine checks to see whether an instance of the
Imaging application exists. If it does not, it invokes the
f Initialize App() function.

The {_Initialize App() function uses the Set statement and the
CreateObject function of Visual Basic to create and return a
reference to the Application object. Then it uses the Set statement
of Visual Basic and the CreateImageViewerObject method of
the Application object to create and return a reference to the
ImageFile object.

Function f_InitializeApp() As Boolean

Set objApp

Set objImg =

'Create an
Set objApp
'Create an
Set objImg

End Function

This function will be called when user attempts to open an
image file for the first time and the Imaging application

is not loaded.

I[f the Imaging application is found and the Application object
and the Image object are set, the function returns TRUE;
otherwise,

Nothing

Nothing

Application Object

= CreateObject("Imaging.Application")
ImageFile Object
objApp.CreatelmageViewerObject(1)
f_InitializeApp = True

Initialize the Imaging application.

the function returns FALSE.

With the Application and ImageFile objects now fully instantiated,
control returns to the s_DispImg() subroutine.

The _DispImg() subroutine sets the TopWindow property of
the Application object to True to have the Imaging application
window remain on top of all other applications that may be
running.

Then it checks to see whether an image file is already displayed by
examining the value of the Name property of the ImageFile
object. If the Name property is not blank, the subroutine invokes

29

| Chapter 1

the Close method of the ImageFile object to close the displayed
image file.

Next, the subroutine invokes the Open method of the ImageFile
object, passing to it the path and file name of the image to display
(from strCurrentFile). The Open method opens the image file
in the Imaging application window.

Bl wagny = R e
Fia da Ve Page Joom Tosk Assomses Wedow Mg
O & L a0 -EE e
i L1 L o + [EE B
peridripans
Lo
. Plees 1 LR
' oy A AL BN
swdx solutions incorporated

Federal Aviation and
Communication Contract

For Internal Use Only

For Halp, prewa 11 100% Pagaloll

Now that the image is open and on display, you can use some of
the other macros to manipulate it and the Imaging application.

30

Adding Imaging Using Automation

Obtaining the Page Count

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_GetPagecount macro and then click Run. The
s_GetPagecount() subroutine executes its code.

The subroutine obtains the page count from the PageCount
property of the ImageFile object and assigns it to the
IngPageCount local variable. Then it invokes the Cells function
of Excel to display the page count (from IngPageCount)in the
cell adjacent to the active cell on the spreadsheet.

Sub s_GetPagecount()

End Sub

Dim TngPageCount As Long

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")
Exit Sub

End If

'Get the page count.
TngPageCount = objImg.PageCount

'Put the page count in the adjacent column.
Cells(ActiveCell.Row, ActiveCell.Column + 1) = TIngPageCount

31

| Chapter 1

32

Rotating an Image Page

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_RotateImg macro and then click Run. The
s_RotateImg() subroutine executes its code.

The subroutine obtains the page number of the currently displayed
image page from the ActivePage property of the ImageFile
object, and assigns it to the TngActivepage local variable. Then it
invokes the RotateLeft method of the Page object to rotate the
displayed image page 90 degrees to the left.

Sub s_RotatelImg()
Dim IngActivepage As Long
If objImg Is Nothing Then
MsgBox ("Please open an image file first")
Exit Sub
End If

IngActivepage = objImg.ActivePage
objImg.Pages(IngActivePage).Rotateleft

End Sub

Adding Imaging Using Automation

Setting the One Page View Mode

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_ViewSingle macro and then click Run. The
s_ViewSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the
Application object with a parameter value of 0, which places the
Imaging application in the One Page view mode.

Sub s_ViewSingle()

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")

Exit Sub
End If

'Place the Imaging application in One Page view mode.
objApp.ImageView = 0

End Sub

33

| Chapter 1

34

Setting the Thumbnail View Mode

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_ViewThumbnails macro and then click Run. The
s_ViewThumbnails() subroutine executes its code.

The subroutine invokes the ImageView method of the
Application object with a parameter value of 1, which places the
Imaging application in the Thumbnail view mode.

Sub s_ViewThumbnails()

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")
Exit Sub

End If

'Place the Imaging application in Thumbnail view mode.
objApp.ImageView = 1

End Sub

Adding Imaging Using Automation |

Setting the Page and Thumbnails View Mode

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_ViewThumbAndSingle macro and then click Run.
The s_ViewThumbAndSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the
Application object with a parameter value of 2, which places the
Imaging application in the Page and Thumbnails view mode.

Sub s_ViewThumbAndSingle()

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")
Exit Sub

End If

'Place the Imaging application in Page and Thumbnails view mode.
objApp.ImageView = 2

End Sub

35

| Chapter 1

36

Closing the Image File and the Imaging
Application

On the Tools menu in Excel, point to Macro and then click
Macros. The Macro dialog box appears.

Click the s_CloseImg macro and then click Run. The
s_Closelmg() subroutine executes its code.

The subroutine invokes the Close method of the ImageFile object
to close the currently displayed image file. Then it invokes the
Quit method of the Application object to close the Imaging
application. Finally, it sets the object variables to Nothing to free
system resources.

Sub s_CloselImg()

On Error Resume Next

objImg.Close 'Close open image
objApp.Quit 'Quit Automation application
Set objImg = Nothing 'Destroy Image object
Set objApp = Nothing 'Destroy Application object
On Error GoTo O 'Reset Error handler

End Sub

2

Automation Lexicon

This chapter describes the properties and methods of each
Imaging for Windows® Automation object.

In this Chapter

OVEIVIEW ..ttt 38
Application Object.......c.ooiiiiiii 38
ImageFile ObJeCt.....cociiiiiiii 50
Page ObjJect 64

PageRange Objectcooiviiiiiiiiiic e 72

| Chapter 2

Overview

Automation enables you to control the Imaging application
programmatically from within your application. Using it, you can
provide your end users with all of the capabilities of the Imaging
application.

Each object has its own set of properties and methods. The
remainder of this chapter describes each one.

Note: Refer to Chapter 1 of this guide for more information
about using Automation to image-enable your
applications.

Application Object

The Application object is a top-level object that controls every
other object you create. The Application object also allows you to
set the environment. For example, you can control the size and
position of the Imaging application window and the visibility of
scroll bars, the status bar, and the toolbar.

Application Object Properties

The following table lists the Application object properties. The
properties that affect the displayed image (for example,
DisplayScaleAlgorithm, ImagePalette, and Zoom) affect
every image displayed in the Application object.

Application Object Properties

Property

Description

ActiveDocument

Returns the active ImageFile object.

AnnotationPaletteVisible

Sets or returns the visibility of the application's annotation
palette.

Application Returns the Application object.
AppState Returns the state of the image viewer application.
DisplayScaleAlgorithm Sets or returns the scaling algorithm used for displaying

images.

38

Automation Lexicon

Application Object Properties (cont.)

Property Description

Edit Sets or returns the application’s ability to edit the displayed
object.

FullName Returns the file specification for the Application object.

Height Sets or returns the distance between the top and bottom
edge of the application window.

ImagePalette Sets or returns the image palette used for image display.

ImageView Sets or returns the present image view.

ImagingToolBarVisible

Sets or returns the visibility of the application’s scan tool-
bar.
Not available in all releases.

Left Sets or returns the distance between the left edge of the
physical screen and the main application window.

Name Returns the name of the Application object.

Parent Returns the Application object.

Path Returns the path specification for this application’s execut-
able file.

ScannerIsAvailable Sets or returns the state of the scanner.

ScanToolBarVisible Sets or returns the visibility of the application’s imaging
toolbar.

ScrollBarsVisible Sets or returns the visibility of the application’s scroll bars.

StatusBarVisible Sets or returns the visibility of the application’s status bar.

ToolBarVisible Sets or returns the visibility of the application’s toolbar.

Top Sets or returns the distance between the top edge of the
physical screen and application’s window.

TopWindow Sets or returns the application’s top window flag.

Visible Returns the visibility of the application.

WebToolBarVisible Sets or returns the visibility of the web toolbar.

Width Sets or returns the distance between the left and right
edges of the application’s window.

Zoom Sets or returns the zoom factor for image display.

39

| Chapter 2

ActiveDocument Property

Description Returns the active ImageFile object in the Application object. This is a read-only property.
Usage ApplicationObject.ActiveDocument

Data Type Object.

Example 'This example returns the ImageFile object in the application.
Dim Img as Object
Set Img = App.ActiveDocument

AnnotationPaletteVisible Property
Description Sets or returns the visibility of the annotation palette. This is a read/write property.
Usage ApplicationObject.AnnotationPaletteVisible = [{Truel|False}]

Data Type Integer (Boolean).

Remarks The AnnotationPaletteVisible property settings are:

Setting Description
True (Default) The annotation palette is visible.
False The annotation palette is not visible.

Application Property

Description Returns the Application object. This is a read-only property.

Usage ApplicationObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Parent As ObjectSet Parent = App.Application

AppState Property

Description Returns the state of the Application object. The state indicates whether the application is
running as an embedded or automation server. This is a read-only property.

Usage ApplicationObject.AppState
Data Type Short.
Remarks The AppState property settings are:

Setting Description

1 The application is running as an embedded server.
2 The application is running as an automation server.

40

Automation Lexicon

DisplayScaleAlgorithm Property

Description Sets or returns the scaling algorithm used for displaying images. This is a read/write

Usage
Data Type

Remarks

property.

ApplicationObject.DisplayScaleAlgorithm [=value]

Short.

The DisplayScaleAlgorithm value can be specified before or after an image is displayed. The

property settings are:

Setting Description

0 (Default) Normal decimation.

1 Gray4 — 4-bit gray scale (16 shades of gray).

2 Gray8 — 8-bit gray scale (256 shades of gray).

3 Stamp — Represents the image as a thumbnail.

4 Optimize — Changes the display scale algorithm based on the image

type of the displayed image. Black and white images are scaled to gray.
Palettized
4- and 8-bit, RGB, and BGR images remain color.

Note: This property must be set prior to opening the ImageFile object. For this
property to take effect after an image is open, you must reopen the image.

Edit Property

Description Sets or returns the Application object’s ability to edit the displayed object. You should set

Usage
Data Type

Remarks

the Edit property prior to opening each ImageFile object. This is a read/write property.
ApplicationObject.Edit = [{Truel|False}]
Integer (Boolean).

The Edit property settings are:

Setting Description

True (Default) Image editing is available.
False The displayed object cannot be changed.

Note: You must set the Edit property prior to opening the ImageFile object. You
can only set the Edit property once in the current session.

41

| Chapter 2

FullName Property

Description

Usage
Data Type

Returns the file specification for the Application object, including the path. This is a read-
only property.
ApplicationObject.FullName

String.

Height Property

Description

Usage
Data Type

Remarks

Sets or returns the distance, in pixels, between the top and bottom edge of the Application
object’s window. This is a read/write property.

ApplicationObject.Height [=value]
Long.

This property must be set prior to opening the ImageFile object. It only takes effect if the
Width, Top, and Left properties are also set. If you set the Height property to less than
the minimum allowable window size, the value is ignored. The minimum setting is usually
27.

The Height property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

ImagePalette Property

Description

Usage
Data Type

Remarks

42

Sets or returns the image palette used to display an image. This is a read/write property.

Note: The ImagePalette property must be set prior to opening the ImageFile
object. For this property to take effect after an image is open, you must
reopen the image.

ApplicationObject.ImagePalette [=value]
Short.

The ImagePalette property settings are:

Setting Description

0 (Default) Custom

1 Common

2 Gray8 — 8-bit grayscale (256 shades of gray)
3 RGB24 — 24-bit (millions of colors)

4 Black and white

Automation Lexicon

ImageView Property

Description Sets or returns the present image view. This is a read/write property.
Usage ApplicationObject.ImageView [=value]

Data Type Short.

Remarks The ImageView property settings are:

Setting Description

0 (Default) One page view
1 Thumbnails view
2 Page and Thumbnails view

The ImageView property and the ImageFileObject.ActivePage property have
the following relationships:

View Relationship
One Page (Default) The active page is displayed.
Thumbnails The active page appears in thumbnail view.

Page and Thumbnails ~ The active page is the page that is displayed.

See Also ImageFileObject.ActivePage property.

ImagingToolBarVisible Property

Description Sets or returns the visibility of this Application object’s imaging toolbar. This is a read/write
property.

Usage ApplicationObject.ImagingToolBarVisible = [{True|False}]

Data Type Integer (Boolean).
Remarks The ImagingToolBarVisible property settings are:

Setting Description

True (Default) The imaging toolbar is visible.
False The imaging toolbar is not visible.

43

| Chapter 2

Left Property

Description Sets or returns the distance, in pixels, between the left edge of the physical screen and the
Application object’s window. This is a read/write property.

Usage ApplicationObject.Left [=value]
Data Type Long.

Remarks The Left property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Top properties are also set.

The Left property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

Name Property
Description Returns the name of this Application object. This is a read-only property.

Usage ApplicationObject.Name

Data Type String.

Parent Property
Description Returns the parent of the Application object. This is a read-only property.

Usage ApplicationObject.Parent

Data Type Object.

Path Property

Description Returns the path specification for the Application object’s executable file. This is a read-
only property.

Usage ApplicationObject.Path

Data Type String.

ScannerisAvailable Property
Description Sets or returns the availablity of the scanner. This is a read/write property.

Usage ApplicationObject.ScannerlIsAvailable = [{Truel|False}]

Data Type Integer (Boolean).

44

Automation Lexicon

Remarks The ScannerIsAvailable property settings are:

Setting Description

True (Default) The scanner is available. If no scanner is attached to the system,
this property setting is False.
False The scanner is unavailable.

ScanToolBarVisible Property

Description Sets or returns the visibility of this Application object’s scan toolbar. This is a read/write
property.

Usage ApplicationObject.ScanToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ScanToolBarVisible property settings are:

Setting Description

True The scan toolbar is visible.
False (Default) The scan toolbar is not visible.

ScrollBarsVisible Property

Description Sets or returns the visibility of the Application object’s scroll bars. This is a read/write
property.

Usage ApplicationObject.ScrollBarsVisible = [{Truel|False}]

Data Type Integer (Boolean).

Remarks The ScrollBarsVisible property settings are:

Setting Description

True (Default) The scroll bars are visible.
False The scroll bars are not visible.

Note: The ScrollBarsVisible property must be set prior to opening the ImageFile
object. For this property to take effect after an image is open, you must
reopen the image.

45

| Chapter 2

StatusBarVisible Property

Data Type Sets or returns the visibility of this Application object’s status bar. This is a read/write
property.

Usage ApplicationObject.StatusBarVisible = [{Truel|False}]

Data Type Integer (Boolean).

Remarks The StatusBarVisible property settings are:

Setting Description

True (Default) The status bar is visible.
False The status bar is not visible.

ToolBarVisible Property

Data Type Sets or returns the visibility of this Application object’s standard toolbar. Read/write
property.

Usage ApplicationObject.ToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ToolBarVisible property settings are:

Setting Description

True (Default) The toolbar is visible.
False The toolbar is not visible.

Top Property

Description Sets or returns the distance, in pixels, between the top edge of the physical screen and main
application window. This is a read/write property.

Usage ApplicationObject.Top
Data Type Long.

Remarks The Top property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Left properties are also set.

The Top property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

46

Automation Lexicon

TopWindow Property

Description Sets or returns this Application object’s top window flag. This is a read/write property.
Usage ApplicationObject.TopWindow = [{True|False}]

Data Type Integer (Boolean).

Remarks The TopWindow property settings are:

Setting Description

True The application is a stay-on-top window.
False (Default) The application is not a stay-on-top window.
Example 'This example makes the application window a stay-on-top window.

App.TopWindow = True

Visible Property

Description Returns the visibility of the Application object. This is a read-only property.
Usage ApplicationObject.Visible

Data Type Integer (Boolean).

Remarks The Visible property settings are:

Setting Description

True The application is visible.
False (Default) The application is not visible.

WebToolBarVisible Property

Description Sets or returns the visibility of this Application object’s web toolbar. This is a read/write
property.

Usage ApplicationObject.WebToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The WebToolBarVisible property settings are:

Setting Description

True The web toolbar is visible.
False (Default) The web toolbar is not visible.

47

| Chapter 2

Width Property

Description Sets or returns the distance, in pixels, between the left and right edges of the Application
object's window. This is a read/write property.

Usage ApplicationObject.Width [=value]
Data Type Long.

Remarks The Width property must be set prior to opening the ImageFile object. This property only
takes effect if the Top, Left, and Height properties are also set. If you set the Width
property to less than the minimum allowable window size, the value is ignored. The
minimum setting is usually 112.

The Width property only returns the value that you set programmatically prior to
opening the window. It does not return changes made to the window after it has
been opened.

Zoom Property

Data Type Sets or returns the zoom factor used for displaying images. This is a read/write property.
Usage ApplicationObject.Zoom [=value]

Data Type Float.

Remarks The zoom factor is a percent value.

Example 'This example sets the zoom factor to 100%.
App.Zoom = 100

'This example returns the current zoom factor.
X = App.Zoom

Application Object Methods

The following table lists the Application object methods.
Application Object Methods

Method Description

CreateImageViewerObject | Creates an Imaging object of the specified class.
FitTo Displays the image at the specified zoom option.
Help Displays online Help.

Quit Exits this application and closes all open objects.

48

Automation Lexicon

CreatelmageViewerObject Method

Description Creates and returns an ImageFile object. The ImageFile object is empty, with no image file

Usage
Data Type
Remarks

Example

associated with it. Use the object's Open or New method to associate a specific image file.
ApplicationObject.CreateImageViewerObject ([ObjectClass])

Object.

This method only supports the ImageFile object, for which the setting is 1.

'This example creates an ImageFile object.
Dim Img as Object
Set Img = App.CreateImageViewerObject (1)

FitTo Method

Description Displays the current image at the specified zoom option. This method updates the

Usage
Data Type

Remarks

Application object’s Zoom property with the actual zoom factor.

This method affects each view as follows:

View Display
One Page The page is zoomed.
Thumbnails No effect — The Application property is changed and

affects other views when they are used.
Page & Thumbnails The page is zoomed — No effect on thumbnails.

ApplicationObject.FitTo (ZoomOption)
Short.

ZoomOption settings are:

Setting Description
1 Best fit

2 Fit to width
3 Fit to height
4 Actual size

49

| Chapter 2

Help Method
Description Displays the Imaging online Help table of contents.

Usage ApplicationObject.Help

Quit Method

Description Closes all open objects and exits the application. The Application object is no longer active
or available.

Usage ApplicationObject.Quit

ImageFile Object

An ImageFile object represents an image file. An ImageFile object can have

= One Page object, representing the currently displayed page of the ImageFile
object.

= One or more PageRange objects, each representing different and possibly
overlapping page ranges.

ImageFile Object Properties

The following table lists the ImageFile object properties.
ImageFile Object Properties

Property Description

ActivePage Sets or returns the ImageFile object’s current page num-
ber.

Application Returns the Application object.

FileType Returns the ImageFile object’s file type.

Name Returns the name of the active image file.

OCRLaunchApplication || gunches an application with an output file after OCR?
processing is complete.

OCROutputFile Sets or returns the output file for OCR processing.

OCROutputType Sets or returns the output file format for OCR process-
ing.

PageCount Returns the number of pages in the ImageFile object.

Parent Returns the parent of the ImageFile object.

50

Automation Lexicon

ImageFile Object Properties

Property Description

Saved Returns a flag indicating whether or not the file has
ever been saved.

a. TextBridge® OCR technology by ScanSoft.

ActivePage Property

Description

Usage
Data Type
Remarks

See Also

Sets or returns the ImageFile object’s active page number. This is a read/write property.

Setting the ActivePage property to a page number causes that page to become
active, which updates the display if the Application object is visible. Refer to the
Application object’s ImageView property for more information about the
relationships between the active page and different views of the page.

Page selection and navigation by the end-user have no effect on the ActivePage
property. The active page is always the active page according to automation.

Note: If you set the ActivePage property to a page number beyond those
contained in the document, an error is returned.
ImageFileObject.ActivePage [=value]
Long.
The number is the page number value.

ApplicationObject.ImageView property.

Application Property

Description
Usage
Data Type

Example

FileType
Description
Usage

Data Type

Returns the Application object. This is a read-only property.
ImageFileObject.Application
Object.

'This example returns the Application object.
Dim Parent As Object
Set Parent = Img.Application

Property

Returns the file type of this ImageFile object. This is a read-only property.
ImageFileObject.FileType

Short.

51

| Chapter 2

Remarks The FileType property settings are:

Setting Description

Unknown

TIFF

Not supported
BMP

PCX

DCX

JPG-JFIF

XIF

GIF

WIFF

O 0 N O U1 M W IN = O

Name Property

Description Returns a string that contains the name of the active image file. This is a read-only
property.

Usage ImageFileObject.Name

Data Type String.

OCRLaunchApplication Property

Description Launches the Application object with an output file after OCR processing is complete.
This is a read/write property.

Usage ImageFileObject.OCRLaunchApplication = [{True|False}]
Data Type Integer (Boolean).
Remarks The OCRLaunchApplication property settings are:

Setting Description
True (Default) Launch the application.
False Do not launch the application.

52

Automation Lexicon

OCROutputFile Property

Description Sets or returns the output file name. If blank, the SaveAs dialog box is displayed. This is a
read/write property.

Usage ImageFileObject.OCROutputFile = [FileName]

Data Type String.

OCROutputType Property

Description Sets or returns the output file type. This is a read/write property.
Usage ImageFileObject.OCROutputType = [Type]

Data Type Long.

Remarks The OCROutputType property results are:

Setting Description

0 Word for Windows/RTF
1 WordPerfect

2 HTML

3 Text

PageCount Property
Description Returns the number of pages in this ImageFile object. This is a read-only property.
Usage ImageFileObject.PageCount

Data Type Long.

Parent Property

Description Returns the parent of the ImageFile object. This is a read-only property.
Usage ImageFileObject.Parent

Data Type Object.

Example 'This example returns the parent of the ImageFile object.
Dim App As Object
App = Img.Parent

Saved Property
Description Returns the saved state of the ImageFile object. Read-only property.

Usage ImageFileObject.Saved

Data Type Integer (Boolean).

53

| Chapter 2

Remarks The Saved property settings are:

Setting Description

True The ImageFile object has been saved and has not changed since it was last
saved.

False The imageFile object has never been saved and has changed since it was
created; or, it has been saved but has changed since it was last saved.

Example 'This example returns the saved state of the file.
bIsSaved = Img.Saved

ImageFile Object Methods

The following table lists the ImageFile object methods.
ImageFile Object Methods

Method Description

AppendExistingPages Appends existing pages to the end of the ImageFile object.
Close Closes the ImageFile object.

CreateContactSheet Saves a contact sheet rendition of the ImageFile object.
FindOIServerDoc Finds Global 360 Imaging 1.x documents and Execute360

Imaging documents. Not available when the application is
running as an embedded server.

Help Displays online Help.

InsertExistingPages Inserts existing pages in the ImageFile object.

New Creates a new blank ImageFile object. Not available when the
application is running as an embedded server.

Ocr OCRs opened Image File.

Open Opens the ImageFile object. Not available when the applica-
tion is running as an embedded server.

Pages Returns a Page or PageRange object for the ImageFile object.

Print Prints the ImageFile object.

RotateAll Rotates all ImageFile object pages.

Save Saves changes to the ImageFile object.

SaveAs Saves the ImageFile object under another name.

SaveCopyAs Saves a copy of the ImageFile object. The application must be

running as an embedded server.

54

Automation Lexicon

ImageFile Object Methods (cont.)

Method

Description

Update

Updates the ImagefFile object embedded within the container
application with the current data from the server application.
The application must be running as an embedded server.

AppendExistingPages Method
Description Appends specified page(s) to the end of the current ImageFile object. If the page(s) being

Usage

Arguments

Example

appended come from an image file of a type different than the active image file, the pages
are converted before being appended. After appending page(s), all PageRange objects are
invalid. You can optionally display a dialog box that allows the end-user to select a file from
which to append page(s).

ImageFileObject.AppendExistingPages [ImageFile], [Page],
[Count], [DisplayUIFlag]

The AppendExistingPages method has the following parameters:

Parameter Data Type Description

ImageFile String The image file from which pages will be appended
(source image file).

Page Long The page from which to start appending pages (in the
source image file).

Count Long The number of pages to append.

DisplayUlFlag Flag True — Displays a dialog box that allows the end-user

to select an image file to append.

False (Default) — Does not display a dialog box.

If you specify True and the selected file is a multi-page
file, the user is prompted to select the pages to append.

'This example appends the first page from the file, BW.TIF.
Img.AppendExistingPages "c:\bw.tif", 1

'This example appends a file selected from a dialog box to the
'currently displayed image file. After the user selects a file
'to append, the application prompts the user to specify the
'starting page number and the number of pages to append from
'the selected file.

Imgl.AppendExistingPages "", 0, 0, True

'This example appends pages to an Imaging Server 1l.x file.
ImgFileObj.AppendExistingPages
4 "Image://ngqall\SYS:\tmp\3PAGES.tif", 1, 3

55

| Chapter 2

'This example appends pages to an Imaging Server 1l.x document.
ImgFileObj.AppendExistingPages
4 "Image://PATRIOTS\CABINET\DRAWER\FOLDER\docl", 3, 2

'This example appends pages to an Execute360 Imaging Server
'document.
ImgFileObj.AppendExistingPages "Imagex://sixpage", 1, 6

Close Method

Description Closes the ImageFile object. Closing an ImageFile object deletes it; all Page and PageRange
objects associated with it are also deleted. The Application object no longer has an
ImageFile object associated with it.

Usage ImageFileObject.Close [SaveChangeFlaqg]
Data Type Integer (Boolean).

Remarks The Close method SaveChangeFlag argument has the following settings:

Setting Description

True Changes are saved when the image file closes.
False (Default) Changes are not saved when the image file closes.

CreateContactSheet Method

Description Saves a contact sheet rendition of the ImageFile object. This method is unavailable when
the Application is running as an embedded server.

Usage ImageFileObject.CreateContactSheet (ImageFile,
[IncludeAnnotations], [OpenAfterSavel])

Data Type String.

Arguments The CreateContactSheet method has the following parameters:

Parameter Data Type Description

ImageFile String The image file object.

IncludeAnnotations Integer Option to include annotations on the image
stamps.

OpenAfterSave Integer Option to open the contact sheet file after it has

been created.

56

Automation Lexicon

FindOIServerDoc Method

Description Finds 1.x documents or Execute360 Imaging documents. This method displays an Imaging
server document Find dialog box, from which the user may search for 1.x documents or
Execute360 Imaging documents. After the user selects a document and chooses the Open
button, the Find dialog box is closed and returns the selected document name, with a path,
to the user. A null string is returned if the user chooses Cancel in the Find dialog box. The
user may use the returned document name string as input for the Image Object Open
method.

Data Type String.

Usage ImageFileObject.FindOIServerDoc

Help Method
Description Displays the Imaging online Help table of contents.

Usage ImageFileObject.Help

InsertExistingPages Method

Description Inserts page(s) into the ImageFile object.
Page(s) to be inserted must come from an existing file. If the pages being inserted
come from an image file of a type difterent than the active image file, the pages are
converted before being inserted. After inserting page(s), all PageRange objects are
invalid. You can optionally cause a dialog box to open for the end-user to select a
file from which to insert page(s).

Usage ImageFileObject.InsertExistingPages (ImageFile, ImagePage,
Count, Page, DisplayUIFlag)

Arguments The InsertExistingPages method has the following parameters:

Parameter Data Type Description

ImageFile String The image file from which page(s) are to be inserted
(the source image file).

ImagePage Long The page before which the new page(s) are to be
inserted.

Count Long The number of pages to insert.

Page Long The page in the source image file from which to start

inserting pages.

57

| Chapter 2

Parameter Data Type Description

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to select a source image file.
False (Default) — Does not display a dialog box.
If you specify True and the selected file is a multi-page
file, the user will be prompted to select the pages to

append.
Example 'This example inserts pages 4 and 5 from the file BW.TIF
'before page 1.
Img.InsertExistingPages "c:\bw.tif", 1, 2, 4
'This example inserts page(s) into the current file at the
'current page. (A dialog box prompts the user for the image
'file to be selected for insertion. Another dialog box
'prompts for a page range.) Page, count, and pagenumber
'arguments are required but ignored when dialogflag is True.
Img.InsertkExistingPages "", 1, 1, 2, True
'This example inserts pages in an Imaging Server 1l.x file.
4 ImgFileObj.InsertExistingPages
"Image://nqall\SYS:\tmp\3PAGES.tif", 2, 3, 1
'This example inserts pages in an Imaging Server 1l.x document.
ImgFileObj.InsertExistingPages
a"Image://PATRIOTS\CABINET\DRAWER\FOLDER\docl", 2, 3, 1
'This example inserts pages in an Execute360 Imaging Server
document.
ImgFileObj.InsertExistingPages "Imagex://sixpage", 1, 2, 5
New Method
Description Displays a dialog box that allows the end-user to create a new ImageFile object that
contains one blank page.
Note: This method is not available when application is running as an embedded
server.
Creating a new ImageFile object causes the new object to become active. If the
active ImageFile object is unsaved, the end-user is prompted to save it before the
new object is created.
No image file is associated with the object until you save it. The file type of the
new object is the same as the file type of the active object.
Usage ImageFileObject.New ([DisplayUIFlag])

58

Automation Lexicon

Remarks

Example

The New method has the following parameter:

Parameter Data Type Description

DisplayUlFlag Flag True — Displays a dialog box that allows the end-
user to create a new image file.
False (Default) — Does not display a dialog box.

'This example creates a new image object.
'Create the image object

Dim App, Img As Object

Set App CreateObject ("Imaging.Application")
Set Img = App.CreateImageViewerObject (1)
'Call the image object New Method

Img.New

Ocr Method
Description OCRs all image file pages.

Usage

Remarks

Example

ImageFileObject.Ocr

The Image file must be open. The Ocr method uses the OcrOutputFile and
OcrOutputFileType properties.

'This example performs an OCR on an image object.
Dim App, Img As Object

Set App = CreateObject ("Imaging.Application")

Set Img = App.CreateImageViewerObject (1)

Img.Open "d:\pcx.tif"

Img.Ocr

Open Method

Description Opens an image file in the parent application window. This associates an image file with the

Usage

ImageFile object. If a file is currently open, it should be closed before a new file is opened.
(See the Close Method).

Note: This method is unavailable when the application is running as an
embedded server.

The Imaging application has the focus after an Open. You can reset the focus
programmatically after an Open, if desired.

ImageFileObject.Open (ImageFile, [IncludeAnnotation], [Page]l,
[DisplayUIFlagl])

59

| Chapter 2

Remarks

Example

See Also

60

The Open method has the following parameters:

Parameter Data Type Description
ImageFile String Name string of the ImageFile object to open.
IncludeAnnota- Flag True (Default)— The image has annotations that
tion are
displayed.
False — The image has annotations that are not
displayed.
Page Long Page number in the image file to display. This

parameter must be a constant, or use the ActiveP-
age property to specify the page that you want dis-
played when you open the file.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-
user to select a file to open.
False (Default) — Does not display a dialog box.

'This example opens an image file named 5page.tif:
Img.Open "C:\images\bSpage.tif"

'This example opens the same file to page 4 with annotations
'displayed:
Img.Open "C:\images\b5page.tif", TRUE, 4

'This example opens a dialog box so the user can select a
'file to open:
Img.Open "",,, TRUE

'This example opens an Imaging Server 1l.x file.
Img.Open "Image://nqall\SYS:\tmp\3PAGES.tif", TRUE, 1

'This example opens an Imaging Server 1.x document.
Img.Open "Image://PATRIOTS\CABINET\DRAWER\FOLDER\docl"

'This example opens an Execute360 Imaging document.
Img.Open"Imagex://sixpage"

ApplicationObject.Edit.

Automation Lexicon

Pages Method

Description Returns the Page or PageRange object for the ImageFile object.

Usage
Data Type

Remarks

Example

ImageFileObject.Pages (StartPage, EndPage)
Long.

If you specify one page number, this method returns a Page object. If you specify two page
numbers, this method returns a PageRange object. To return a range of pages, specify the
starting page number and ending page number. The first page number can be a variable,
but the second page number must be a constant.

The Pages method uses these parameters:

Parameter Data Type Description

StartPage Long The starting page of the page range to be returned.
EndPage Long The ending page of the page range to be returned.

'This example returns a Page object and a PageRange object.
Dim Page As Object

Dim PageRange As Object

Set Page = Img.Pages (1)

Set PageRange = Img.Pages (1, 3)

Print Method

Description Prints the image file associated with the ImageFile object. You can optionally display a

Usage

Remarks

Example

dialog box to allow the end-user to select the print options.
ImageFileObject.Print ([DisplayUIFlag])

The Print method DisplayUIFlag argument has the following settings:

Setting Description
True Displays a dialog box that allows the end-user to select print file options.
False (Default) No dialog box is displayed.

'This example prints the specified image file.
x = Img.Print

RotateAll Method

Description Rotates all ImageFile object pages. Pages are rotated clockwise in 90 degree increments.

Usage

Example

ImageFileObject.RotateAll

'This example rotates all pages of the currently displayed image.
Img.RotateAll

61

| Chapter 2

Save Method

Description Saves changes to the ImageFile object. If no image file is associated with the ImageFile
object, the SaveAs method is executed instead of the Save method.

Usage ImageFileObject.Save

SaveAs Method

Description Saves the ImageFile object as another ImageFile object. Copies its image file and renames it.

This method allows you to specify the new object's image parameters. If specified,
the file can be converted from one type to another. The current image file is closed
without being saved and the Save As object becomes the active image file. You can
optionally display a dialog box that allows the end-user to name the file for the first
time or select a file to overwrite.

Usage ImageFileObject.SaveAs (ImageFile, [FileType], [DisplayUIFlag])
Data Type String.

Remarks The SaveAs method has the following parameters:

Parameter Data Type Description
ImageFile String The destination’s ImageFile object name string.
FileType Short The file type that you want to save the image as. This

number must be a constant. It must be present in the
command if the dialog flag option is used, even
though its value is ignored when the DisplayUlFlag is
set to True.

DisplayUlFlag ~ Flag True — Displays a dialog box that allows the end-
user to enter or select a filename and options for sav-
ing the file.

False (Default) — Does not display a dialog box.

The SaveAs method FileType argument settings are:

Setting Description

1 TIFF
2 Not supported
3 BMP

62

Automation Lexicon

Example

'This example saves a file in TIF format.
Img.SaveAs "picturel.tif", 1

'This example opens a Save As dialog box so that the end-user can
'name the file for the first time or overwrite an existing file:
Img.SaveAs "", 0, True

SaveCopyAs Method

Description Saves a copy of the ImageFile object as another ImageFile object. You may specify the

Usage
Data Type

Remarks

FileType of the destination file. The FileType can be TIFF or BMP.

This method allows you to specify the new object’s image parameters. If specified,
the file can be converted from one type to another. The current image file remains
the active image file. This method can only be used after launching the embedded
server application in a separate window.

ImageFileObject.SaveCopyAs (ImageFile, FileType, DisplayUIFlag)
String.

The SaveCopyAs method has the following parameters:

Parameter Data Type Description
ImagefFile String The destination’s ImageFile object name string.
FileType Short The image file type that you want to save the image

as. This number must be a constant. It must be pres-
ent in the command if the dialog flag option is used,
even though its value is ignored when the DisplayUl-
Flag is set to True.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-
user to enter or select a filename and options for sav-
ing the file.

False (Default) — Does not display a dialog box.

Update Method

Description Updates the ImageFile object embedded within the container application with the current

Usage

data from the server application.

This method can only be used after launching the embedded server application in a
separate window.

ImageFileObject.Update

63

| Chapter 2

Page Object

Page Object Properties

A Page object represents a single page in an ImageFile object. Page objects can only

be accessed by using the Pages method of the parent ImageFile object.

The following table lists the Page object properties.

Page Object Properties

Property Description

Application Returns the Application object.
CompressionInfo Returns the page’s compression information.
CompressionType Returns the page’s compression type.

Height Returns the page’s height.

ImageResolutionX Sets or returns the page’s horizontal resolution.
ImageResolutionY Sets or the returns page’s vertical resolution.
Name Returns the page number of this page.
PageType Returns the page’s image type.

Parent Returns the parent of the Page object.
ScrollPositionX Sets or returns this page’s horizontal scroll position.
ScrollPositionY Sets or returns this page’s vertical scroll position.
Width Returns the page’s width.

Application Property

Description Returns the Application object. This is a read-only property.

Usage
Data Type

Example

Compressioninfo Property

PageObject.Application

Object.

'This example returns the Application object.
Dim Img As ObjectDim Parent As ObjectSet Parent =
4 Img.Pages(l) .Application

Description Returns this page’s compression information. This is a read-only property.

Usage
Data Type

64

PageObject.CompressionInfo]

Long.

Automation Lexicon

Remarks

Remarks

Example

The CompressionInfo property settings are:

Settin

9
0
1

16

32

64
128
256
512
1024
2048
4098
8196
16392

Description

No compression options set. Only applicable to uncompressed image files.

EOL (Include/expect End Of Line). Each line is terminated with an end-of-
line bit. Not used for JPEG compression.

Packed Lines (Byte align new lines). Not used for JPEG compression.

Prefixed EOL (Include/expect prefixed End Of Line). Each strip of data is
prefixed by a standard end-of-line bit sequence. Not used for JPEG com-
pression.

Compressed LTR (Compressed bit order, left to right). The bit order for the
compressed data is the most significant bit to the least significant bit. Not
used for JPEG compression.

Expanded LTR (Expanded bit order, left to right). The bit order for the
expanded data is the most significant bit to the least significant bit. Not
used for JPEG compression.

Negate (Invert black and white on expansion). Indicates the setting of the
Photometric Interpretation field of a TIFF file. Not used for JPEG compres-
sion.

Low Resolution/High Quality (JPEG compression only).

Low Resolution/Medium Quality (JPEG compression only).
Low Resolution/Low Quality (JPEG compression only).
Medium Resolution/High Quality (JPEG compression only).
Medium Resolution/Medium Quality (JPEG compression only).
Medium Resolution/Low Quality (JPEG compression only).
High Resolution/High Quality (JPEG compression only).

High Resolution/Medium Quality JPEG compression only).
High Resolution/Low Quality (JPEG compression only).

Image files that do not have a compression type of JPEG will have a value between 1 and
63. This value is a combination of the values of 1 to 32. For JPEG files, the value is from 64
to 16384, and is only one of these values.

'This example returns the page's compression information.
x = Img.Pages(1l) .CompressionInfo

65

| Chapter 2

CompressionType Property
Description Returns this page’s compression type. This is a read-only property.

Usage PageObject.CompressionType [=value]
Data Type Short.

Remarks The CompressionType property settings are:

Setting Description

Unknown

No Compression

Group 3 1D FAX

Group 3 Modified Huffman
PackBits

Group 4 2D FAX

JPEG

Reserved

Group 3 2D FAX

LZW

O 00 N O Ul p W N = O

Example 'This example returns this page's compression type.
x = Img.Pages(l) .CompressionType

Height Property

Description Returns this page’s height in pixels. This is a read-only property.

Usage PageObject.Height

Data Type Long.

Example 'This example returns this page's height in pixels.
x = Img.Pages(1l) .Height

66

Automation Lexicon

ImageResolutionX Property

Description Sets or returns this page’s horizontal resolution, in dots-per-inch. An error occurs when a

Usage
Data Type

Example

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.
PageObject.ImageResolutionX [= value]
Long.

'This example sets this page's horizontal resolution.
Img.Pages (1) .ImageResolutionX = 200

'This example returns this page's horizontal resolution.
XRes = Img.Pages(l).ImageResolutionX

ImageResolutionY Property

Description Sets or returns this page’s vertical resolution, in dots-per-inch. An error occurs when a

Usage
Data Type

Example

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.
PageObject.ImageResolutionY [= value]
Long.

'This example sets this page's vertical resolution.
Img.Pages (1) .ImageResolutionY = 200

'This example returns this page's vertical resolution.
YRes = Img.Pages(l).ImageResolutionY

Name Property

Description Returns the page number of the page in the ImageFile object. This is a read-only property.

Usage
Data Type

Example

PageObject.Name
Long.

'This example returns the page number of the page in the
'ImageFile object.
x = Img.Pages (1) .Name

67

| Chapter 2

PageType Property

Description Returns the page’s image type. This is a read-only property.
Usage PageObject.PageType

Data Type Short.

Remarks The PageType property settings are:

Setting Description
1 Black and White
2 Gray 4
3 Gray 8
4 Palettized 4
5 Palettized 8
6 RGB 24
Example 'This example returns the page's image type.

x = Img.Pages (1) .PageType

Parent Property

Description Returns the parent of the Page object. This is a read-only property.
Usage PageObject.Parent

Data Type Object.

Example 'This example returns the parent of the Page object.
x = Img.Pages (1l) .Parent

ScrollPositionX Property

Description Sets or returns this page’s horizontal scroll position, in pixels. This is a read/write property.
Usage PageObject.ScrollPositionX [=value]

Data Type Long.

Example 'This example sets this page's horizontal scroll position.
Img.Pages(l) .ScrollPositionX = 200

'This example returns this page's horizontal scroll position.
xpos = Img.Pages(l).ScrollPositionX

68

Automation Lexicon

ScrollPositionY Property

Description Sets or returns this page’s vertical scroll position, in pixels. This is a read/write property.

Usage PageObject.ScrollPositionY [=value]

Data Type Long.

Example 'This example sets this page's vertical scroll position.

Img.Pages (1) .ScrollPositionY = 200

'This example returns this page's vertical scroll position.

ypos = Img.Pages(l).ScrollPositionY

Width Property

Description Returns this page’s width, in pixels. This is a read-only property.

Usage PageObject.Width

Data Type Long.

Example 'This example returns this page's width in pixels.
x = Img.Pages(1l) .Width

Page Object Methods

The following table lists the Page object methods.

Page Object Methods

Method Description

Delete Deletes the page.

Flip Rotates the page 180 degrees.

Help Displays online Help.

Ocr OCRs Image Page.

Print Prints the page.

RotateLeft Rotates the page counterclockwise 90 degrees.
RotateRight Rotates the page clockwise 90 degrees.

Scroll Scrolls the page.

69

| Chapter 2

Delete Method

Description Deletes the specified page from the active object. After deleting a page, the next page is
displayed (if one exists). Otherwise, the previous page is displayed.

Usage PageObject.Delete

Example 'This example deletes the specified page.
Img.Pages (1) .Delete

Flip Method

Description Rotates the specified page 180 degrees. This change becomes permanent when the image
file is saved.

Usage PageObject.Flip

Example 'This example flips the page.
Img.Pages(l) .Flip

Help Method

Description Displays the Imaging online Help table of contents.

Usage PageObject.Help

Ocr Method
Description OCRs the image page.
Usage PageObject.Ocr

Print Method
Description Prints the page.
Usage PageObject.Print

Example 'This example prints the page.
x = Img.Pages(l) .Print

RotateLeft Method

Description Rotates the page 90 degrees counterclockwise. This change becomes permanent when the
image file is saved.

Usage PageObject.RotateLeft

Example 'This example rotates the page 90 degrees to the left.
Img.Pages (1) .Rotateleft

70

Automation Lexicon

RotateRight Method

Description Rotates the page 90 degrees clockwise. This change becomes permanent when the image
file is saved.

Usage PageObject.RotateRight

Example 'This example rotates the page 90 degrees to the right.
Img.Pages (1) .RotateRight

Scroll Method
Description Scrolls the page.
Usage PageObject.Scroll Direction,ScrollAmount

Remarks The Scroll method uses the following parameters:

Parameter Data Type Description

Direction Integer Direction in which to scroll the image:
0 — (Default) Scrolls down
1 — Scrolls up
2 — Scrolls right
3 — Scrolls Left

ScrollAmount Long Number of pixels to scroll the image

Example 'This example scrolls the page down 200 pixels.
Img.Pages(1l) .Scroll 0 200

71

| Chapter 2

PageRange Object

A PageRange object represents a range of consecutive pages in an ImageFile object.
A page range is a set of pages starting at the StartPage property and ending at the
EndPage property. PageRange objects can only be accessed by using the Pages
method of the parent ImageFile object.

PageRange Object Properties

The following table lists the PageRange object properties.
PageRange Object Properties

Property Description

Application Returns the Application object.

Count Returns the number of pages in this range.

EndPage Returns or sets the page number of the last page in the
range.

Parent Returns the parent of the PageRange object.

StartPage Returns or sets the page number of the first page in the
range.

Application Property
Description Returns the Application object. This is a read-only property.

Usage PageRangeObject.Application

Description Object.

Count Property
Description Returns the number of pages in this range. This is a read-only property.

Usage PageRangeObject.Count

Data Type Long.

EndPage Property
Description Returns or sets the page number of the last page in the range. This is a read/write property.

Usage PageRangeObject.EndPage [=value]

Data Type Long.

72

Automation Lexicon

Remarks This property setting is the number of the last page. The value of EndPage must be greater
than or equal to the value of StartPage.

Parent Property

Description Returns the parent of the PageRange object. This is a read-only property.
Usage PageRangeObject.Parent

Data Type Object.

Example 'This example returns the parent of the PageRange object.

x = Img.Pages(1l,7) .Parent

StartPage Property

Description Returns or sets the page number of the first page in the range. This is a read/write
property.

Usage PageRangeObject.StartPage [=value]

Data Type Long.

Remarks This property setting is the number of the first page. The value of StartPage must be less
than or equal to the value of EndPage.

PageRange Object Methods

The following table lists the PageRange object methods.
PageRange Object Methods

Method Description

Delete Deletes the page range.
Ocr OCRs the page range.
Print Prints the page range.

The Delete, Oct, and Print methods of the PageRange object use the following

parameters:

Parameter Data Type Description

StartPage Long First page to be deleted.

NumPages Long Number of pages to be deleted, including the Start-

Page.

73

| Chapter 2

Delete Method

Description Removes pages from the ImageFile object. After deleting a PageRange object, all page
ranges are invalid.

Usage PageRangeObject.Delete ()

Example 'This example deletes the pages 1 through 3.
Img.Pages (1, 3) .Delete

Ocr Method
Description OCRs the page range.
Usage PageRangeObject.Ocr ()

Example 'This example OCRs pages 2 through 6.
x = Img.Pages(2,6) .0cr

Print Method
Description Prints the page range.
Usage PageRangeObject.Print ()

Example 'This example prints pages 1 through 5.
x = Img.Pages(1l,5) .Print

74

4.0 B 09/2008 ®
www.global360.com

	Contents
	About This Guide
	Purpose
	Prerequisites
	Related Information
	Support

	Chapter 1 - Adding Imaging Using Automation
	Overview
	Imaging Components
	Imaging Application
	Imaging Flow
	Imaging Preview

	Invoking Imaging for Windows
	Command Line Invocation
	OLE

	When to Use Automation
	The Object Hierarchy
	Application Object
	ImageFile Object
	Page Object
	PageRange Object

	Imaging Application Modes
	Automation Server Mode
	Embedded Server Mode
	Examples

	Demonstration Project
	View Modes
	Example
	The Automation From Excel Project

	Chapter 2 - Automation Lexicon
	Overview
	Application Object
	Application Object Properties
	Application Object Methods

	ImageFile Object
	ImageFile Object Properties
	ImageFile Object Methods

	Page Object
	Page Object Properties
	Page Object Methods

	PageRange Object
	PageRange Object Properties
	PageRange Object Methods

