€3 opentext” SOLUTION OVERVIEW

Protect Al-powered apps
from emerging vulnerabilities

Get comprehensive security that identifies Al-related
risks and secures applications across the SDLC

Benefits Al is powering a new generation of intelligent applications—
« Security for Al-powered but it's also introducing new vulnerabilities that traditional
applications, not just AppSec tools can’t detect. As enterprises embed LLMs, Al

traditional code

» Detection of Al- and LLM-
specific vulnerabilities

agents, and model-driven features into customer-facing and
mission-critical systems, they expose new attack surfaces,

« Al-aware testing across the from prompt interfaces to Al output handling.

full development lifecycle OpenText™ Application Security helps security leaders protect Al-powered

 Practical risk reduction at applications across the entire SDLC. By extending proven SAST, SCA, and
DevSecOps speed DAST capabilities with Al-specific detection, automated triage, and intelligent
risk prioritization, OpenText helps teams reduce emerging threats, improve
AppSec efficiency, and secure innovation at enterprise scale.

Security for Al-powered applications, not just traditional code

OpenText™ Application Security helps organizations secure the complete
Al-powered application stack. This includes the code, APIs, data flows, and

Al components that drive intelligent behavior. As large language models, Al
agents, and GenAl services are integrated into customer-facing and mission-
critical systems, we expand proven AppSec practices to support these modern
architectures. The result is strong protection for Al functionality without
slowing innovation.

Detection of Al- and LLM-specific vulnerabilities

Our AppSec portfolio addresses the unique security risks introduced by Al-
powered features—threats that traditional testing methods often miss. These
include prompt injection, insecure model interactions, data leakage through Al
responses, unsafe output handling, and vulnerabilities in agent orchestration
or tool invocation. We also identify conventional application and API flaws that
can expose or worsen Al-related risks.


https://www.opentext.com/products/application-security

Al-aware testing across the full development lifecycle

OpenText supports continuous, Al-aware security testing from early
development through CI/CD to production. By combining SAST, DAST, and
software supply chain analysis with Al-assisted auditing and prioritization,
OpenText gives teams clear visibility into how Al features interact with
application logic, sensitive data, and external services. This helps catch and
address risks before they reach users.

Practical risk reduction at DevSecOps speed

Al-powered triage and remediation streamline workflows by focusing teams
on the vulnerabilities that matter most. By reducing false positives and
highlighting real, exploitable risks—including those specific to Al—OpenText
AppSec enables faster decision-making, stronger collaboration between
security and development, and secure delivery of Al-driven software at scale.

Real-world Al vulnerabilities in action

Al features create new risks that traditional AppSec often misses—from
prompt injection to unsafe outputs and vector-based data leaks. This table
highlights real-world vulnerabilities in LLM-powered apps, mapped to the
OWASP Top 10 for LLMs, showing how Al expands the attack surface and why
Al-aware protection is critical across the SDLC.

Category Description OWASP Top 10 for LLM Apps
Anthropic Omitting token or rate limits for Anthropic APIs allows users to LLMO05:2025 Improper Output
misconfiguration: issue long or unlimited requests, leading to resource exhaustion Handling/LLM10:2025 Unbounded
Unspecified token limit and inflated costs. Consumption

Credential management: Embedding API keys or passwords directly in code exposes them -

Hardcoded API credentials to anyone who can view the source, enabling unauthorized access.

Cross-site scripting: Al Reflecting Al-generated HTML or script output without proper LLMO03:2025 Supply Chain/

sanitization enables attackers to run JavaScript in users’ browsers. LLM05:2025 Improper Output

Handling

Cross-site scripting: DOM
Al

(DOM) on the client side lets malicious payloads execute by

Inserting untrusted Al output into the Document Object Model LLM03:2025 Supply Chain/

LLMO05:2025 Improper Output

altering the DOM. Handling

Data poisoning: Malicious or poisoned data inserted into vector stores can skew LLMO04:2025 Data and Model

Al embedding semantic search and leak sensitive information when access Poisoning/LLM08:2025 Vector and
controls are weak. Embedding Weaknesses

Data positioning:
Al training

Attackers can corrupt training or fine-tuning datasets with biased = LLM04:2025 Data and Model
or backdoored examples, so the model produces harmful outputs. Poisoning

Dynamic code evaluation:
Unsafe TensorFlow
deserialization

Deserializing Keras models using unsafe YAML loading (yaml. LLMO03:2025 Supply Chain
unsafe_load) enabled arbitrary code execution and was removed
to mitigate the risk.

Embedding and data
exposure

Encoding confusion:
Invisible characters

Protect Al-powered apps from emerging vulnerabilities

Hidden unicode characters in configuration files can mask
malicious instructions.

Poorly partitioned embeddings allow other queries or tenants to LLMO08:2025 Vector and
retrieve or infer sensitive data stored in a vector database.

Embedding Weaknesses

LLMO03:2025 Supply Chain



Category Description

Excessive agency Granting LLM-

OWASP Top 10 for LLM Apps

powered agents broad permissions to call functions LLM06:2025 Excessive Agency

or external services increases the chance of misinterpretation or
malicious behavior.

OpenAl misconfiguration:  Failing to bound response size or query rate for OpenAl calls leaves LLM05:2025 Improper Output
Unspecified token limit the system exposed to unbounded consumption and unexpected  Handling/LLM10:2025 Unbounded

costs.

Consumption

Path manipulation Allowing unchecked file path input lets attackers traverse LLMO02:2025 Sensitive Information
directories (e.g., via “../”) to access sensitive files. Disclosure/LLM05:2025 Improper

Output Handling

Privacy violation Unsanitized prompts or training data can expose personal or LLM02:2025 Sensitive Information
financial information, and prompt injection can coerce chatbots Disclosure
into retrieving secrets.

Prompt injection Carefully crafted input can override an LLM’s instructions or LLMO1: 2025 Prompt Injection
extract data, making the model behave in unintended ways.

Prompt injection: Persistent Untrusted data stored in databases or logs that forms part of LLMO01:2025 Prompt Injection
system prompts can persistently influence or compromise the
model.
System information leak: Revealing file paths, usernames, or stack traces in error messages LLMO02:2025 Sensitive Information
Internal gives attackers insights into the environment. Disclosure

Unbounded consumption Lack of rate limits or token bounds allows attackers to send large  LLM10:2025 Unbounded
misconfiguration or numerous requests, draining resources and racking up costs. Consumption

Languages and
frameworks supported

OpenText™ Application Security
supports 33+ languages and
frameworks, enabling consistent
protection across modern, legacy,
and Al-driven environments. From
enterprise apps to Al workloads, this
broad coverage helps teams detect
both traditional vulnerabilities and
emerging Al risks—wherever code is
written or deployed.

This depth ensures Al-aware testing
and proven AppSec controls apply
across the entire development stack.

Enterprise and backend Java, Kotlin, C#, .NET, VB.NET

Web and API development JavaScript, TypeScript, Python, PHP, Ruby
Cloud and microservices Go, Java, .NET, Node.js

Al/ML workloads Python (TensorFlow, PyTorch), Java

Mobile applications Android (Java/Kotlin), iOS (Swift, Objective-C)
Native and systems C,C++

ERP and specialized ABAP (SAP)

Infrastructure as code Dockerfiles, Kubernetes YAML, Terraform

Protect Al-powered apps from emerging vulnerabilities 3



Resources

OpenText™ Application Security

Learn more »

Watch a product demo
See it in action»

Go deeper on Al and AppSec
Read blog »

Understanding the quantum
computing challenge
Read blog »

Learn more about related
capabilities
Learn more »

Al-driven development introduces new patterns of risk, but strong security
principles still apply. OpenText™ Application Security extends trusted testing
capabilities into Al-enabled architectures, combining broad language
coverage, deep vulnerability detection, and Al-assisted analysis backed by
continuously updated research.

By unifying testing across code, APIs, and open-source components, OpenText
helps teams secure Al-powered applications with speed and consistency.
Organizations can move faster with Al while keeping security tightly aligned to
their development workflows and business priorities.

OpenText Application Security deployment options:

Accelerate cloud strategies with OpenText cloud experts

e OpenText Managed Private Cloud

Extend your team

« On-premises software, managed by your organization or OpenText

Run anywhere and scale globally in the OpenText public cloud

« OpenText Core Application Security (multi-tenant SaaS) consumed as a
service [by pricing model such as subscription or by consumption]

o Example: OpenText Core Content runs in the OpenText Public Cloud with a
user subscription
Run anywhere and scale globally in the hyperscaler cloud of your choice

o Hyperscaler cloud partners (OpenText Private Cloud, AWS private or public
cloud, GCP private or public cloud, Azure private or public cloud)

Develop, connect, and extend your information management capabilities

» APIs from OpenText Developer Cloud

€3 opentext”


https://videos.opentext.com/watch/Nh6FSLP2ihRzHKUJ435BaU?_gl=1*n9gmym*_gcl_au*MTg3MzUyNTAzLjE3NjA5OTc2OTA.*_ga*MTc5MzMwODU3NS4xNzA1Njg1NjQ1*_ga_8LWPJ50ZXY*czE3NjU5OTE1OTgkbzMzJGcxJHQxNzY2MDA4NDYzJGozNiRsMCRoMTM1Njc4NTQxOQ
https://blogs.opentext.com/tag/application-security
https://blogs.opentext.com/preparing-for-post-quantum-cryptography-with-opentext-sast-and-dast/
https://www.opentext.com/products/static-application-security-testing
https://www.opentext.com/products/application-security

