
SOLUTION OVERVIEW

Protect AI-powered apps
from emerging vulnerabilities
Get comprehensive security that identifies AI-related
risks and secures applications across the SDLC

AI is powering a new generation of intelligent applications—
but it’s also introducing new vulnerabilities that traditional
AppSec tools can’t detect. As enterprises embed LLMs, AI
agents, and model-driven features into customer-facing and
mission-critical systems, they expose new attack surfaces,
from prompt interfaces to AI output handling.
OpenText™ Application Security helps security leaders protect AI-powered
applications across the entire SDLC. By extending proven SAST, SCA, and
DAST capabilities with AI-specific detection, automated triage, and intelligent
risk prioritization, OpenText helps teams reduce emerging threats, improve
AppSec efficiency, and secure innovation at enterprise scale.

Security for AI-powered applications, not just traditional code

OpenText™ Application Security helps organizations secure the complete
AI-powered application stack. This includes the code, APIs, data flows, and
AI components that drive intelligent behavior. As large language models, AI
agents, and GenAI services are integrated into customer-facing and mission-
critical systems, we expand proven AppSec practices to support these modern
architectures. The result is strong protection for AI functionality without
slowing innovation.

Detection of AI- and LLM-specific vulnerabilities

Our AppSec portfolio addresses the unique security risks introduced by AI-
powered features—threats that traditional testing methods often miss. These
include prompt injection, insecure model interactions, data leakage through AI
responses, unsafe output handling, and vulnerabilities in agent orchestration
or tool invocation. We also identify conventional application and API flaws that
can expose or worsen AI-related risks.

Benefits
• Security for AI-powered
applications, not just
traditional code

• Detection of AI- and LLM-
specific vulnerabilities

• AI-aware testing across the
full development lifecycle

• Practical risk reduction at
DevSecOps speed

https://www.opentext.com/products/application-security

Protect AI-powered apps from emerging vulnerabilities 2

AI-aware testing across the full development lifecycle

OpenText supports continuous, AI-aware security testing from early
development through CI/CD to production. By combining SAST, DAST, and
software supply chain analysis with AI-assisted auditing and prioritization,
OpenText gives teams clear visibility into how AI features interact with
application logic, sensitive data, and external services. This helps catch and
address risks before they reach users.

Practical risk reduction at DevSecOps speed

AI-powered triage and remediation streamline workflows by focusing teams
on the vulnerabilities that matter most. By reducing false positives and
highlighting real, exploitable risks—including those specific to AI—OpenText
AppSec enables faster decision-making, stronger collaboration between
security and development, and secure delivery of AI-driven software at scale.

Real-world AI vulnerabilities in action

AI features create new risks that traditional AppSec often misses—from
prompt injection to unsafe outputs and vector-based data leaks. This table
highlights real-world vulnerabilities in LLM-powered apps, mapped to the
OWASP Top 10 for LLMs, showing how AI expands the attack surface and why
AI-aware protection is critical across the SDLC.

Category Description OWASP Top 10 for LLM Apps

Anthropic
misconfiguration:
Unspecified token limit

Omitting token or rate limits for Anthropic APIs allows users to
issue long or unlimited requests, leading to resource exhaustion
and inflated costs.

LLM05:2025 Improper Output
Handling/LLM10:2025 Unbounded
Consumption

Credential management:
Hardcoded API credentials

Embedding API keys or passwords directly in code exposes them
to anyone who can view the source, enabling unauthorized access.

-

Cross-site scripting: AI Reflecting AI‑generated HTML or script output without proper
sanitization enables attackers to run JavaScript in users’ browsers.

LLM03:2025 Supply Chain/
LLM05:2025 Improper Output
Handling

Cross-site scripting: DOM
AI

Inserting untrusted AI output into the Document Object Model
(DOM) on the client side lets malicious payloads execute by
altering the DOM.

LLM03:2025 Supply Chain/
LLM05:2025 Improper Output
Handling

Data poisoning:
AI embedding

Malicious or poisoned data inserted into vector stores can skew
semantic search and leak sensitive information when access
controls are weak.

LLM04:2025 Data and Model
Poisoning/LLM08:2025 Vector and
Embedding Weaknesses

Data positioning:
AI training

Attackers can corrupt training or fine‑tuning datasets with biased
or backdoored examples, so the model produces harmful outputs.

 LLM04:2025 Data and Model
Poisoning

Dynamic code evaluation:
Unsafe TensorFlow
deserialization

Deserializing Keras models using unsafe YAML loading (yaml.
unsafe_load) enabled arbitrary code execution and was removed
to mitigate the risk.

LLM03:2025 Supply Chain

Embedding and data
exposure

Poorly partitioned embeddings allow other queries or tenants to
retrieve or infer sensitive data stored in a vector database.

LLM08:2025 Vector and
Embedding Weaknesses

Encoding confusion:
Invisible characters

Hidden unicode characters in configuration files can mask
malicious instructions.

LLM03:2025 Supply Chain

Protect AI-powered apps from emerging vulnerabilities 3

Category Description OWASP Top 10 for LLM Apps

Excessive agency Granting LLM‑powered agents broad permissions to call functions
or external services increases the chance of misinterpretation or
malicious behavior.

LLM06:2025 Excessive Agency

OpenAI misconfiguration:
Unspecified token limit

Failing to bound response size or query rate for OpenAI calls leaves
the system exposed to unbounded consumption and unexpected
costs.

LLM05:2025 Improper Output
Handling/LLM10:2025 Unbounded
Consumption

Path manipulation Allowing unchecked file path input lets attackers traverse
directories (e.g., via “../”) to access sensitive files.

LLM02:2025 Sensitive Information
Disclosure/LLM05:2025 Improper
Output Handling

Privacy violation Unsanitized prompts or training data can expose personal or
financial information, and prompt injection can coerce chatbots
into retrieving secrets.

LLM02:2025 Sensitive Information
Disclosure

Prompt injection Carefully crafted input can override an LLM’s instructions or
extract data, making the model behave in unintended ways.

LLM01: 2025 Prompt Injection

Prompt injection: Persistent Untrusted data stored in databases or logs that forms part of
system prompts can persistently influence or compromise the
model.

LLM01:2025 Prompt Injection

System information leak:
Internal

Revealing file paths, usernames, or stack traces in error messages
gives attackers insights into the environment.

LLM02:2025 Sensitive Information
Disclosure

Unbounded consumption
misconfiguration

Lack of rate limits or token bounds allows attackers to send large
or numerous requests, draining resources and racking up costs.

LLM10:2025 Unbounded
Consumption

Languages and
frameworks supported

OpenText™ Application Security
supports 33+ languages and
frameworks, enabling consistent
protection across modern, legacy,
and AI-driven environments. From
enterprise apps to AI workloads, this
broad coverage helps teams detect
both traditional vulnerabilities and
emerging AI risks—wherever code is
written or deployed.

This depth ensures AI-aware testing
and proven AppSec controls apply
across the entire development stack.

Language group Examples

Enterprise and backend Java, Kotlin, C#, .NET, VB.NET

Web and API development JavaScript, TypeScript, Python, PHP, Ruby

Cloud and microservices Go, Java, .NET, Node.js

AI/ML workloads Python (TensorFlow, PyTorch), Java

Mobile applications Android (Java/Kotlin), iOS (Swift, Objective-C)

Native and systems C, C++

ERP and specialized ABAP (SAP)

Infrastructure as code Dockerfiles, Kubernetes YAML, Terraform

Copyright © 2026 Open Text • 01.26 | 241-000228-001

AI-driven development introduces new patterns of risk, but strong security
principles still apply. OpenText™ Application Security extends trusted testing
capabilities into AI-enabled architectures, combining broad language
coverage, deep vulnerability detection, and AI-assisted analysis backed by
continuously updated research.

By unifying testing across code, APIs, and open-source components, OpenText
helps teams secure AI-powered applications with speed and consistency.
Organizations can move faster with AI while keeping security tightly aligned to
their development workflows and business priorities.

OpenText Application Security deployment options:

Accelerate cloud strategies with OpenText cloud experts

•	OpenText Managed Private Cloud

Extend your team

•	 On-premises software, managed by your organization or OpenText

Run anywhere and scale globally in the OpenText public cloud

•	OpenText Core Application Security (multi-tenant SaaS) consumed as a
service [by pricing model such as subscription or by consumption]

•	 Example: OpenText Core Content runs in the OpenText Public Cloud with a
user subscription

Run anywhere and scale globally in the hyperscaler cloud of your choice

•	Hyperscaler cloud partners (OpenText Private Cloud, AWS private or public
cloud, GCP private or public cloud, Azure private or public cloud)

Develop, connect, and extend your information management capabilities

•	APIs from OpenText Developer Cloud

Resources

OpenText™ Application Security
Learn more ›

Watch a product demo
See it in action ›

Go deeper on AI and AppSec
Read blog ›

Understanding the quantum
computing challenge
Read blog ›

Learn more about related
capabilities
Learn more ›

https://videos.opentext.com/watch/Nh6FSLP2ihRzHKUJ435BaU?_gl=1*n9gmym*_gcl_au*MTg3MzUyNTAzLjE3NjA5OTc2OTA.*_ga*MTc5MzMwODU3NS4xNzA1Njg1NjQ1*_ga_8LWPJ50ZXY*czE3NjU5OTE1OTgkbzMzJGcxJHQxNzY2MDA4NDYzJGozNiRsMCRoMTM1Njc4NTQxOQ
https://blogs.opentext.com/tag/application-security
https://blogs.opentext.com/preparing-for-post-quantum-cryptography-with-opentext-sast-and-dast/
https://www.opentext.com/products/static-application-security-testing
https://www.opentext.com/products/application-security

