
ADM Market Insight:
Improve Application Quality in Production:
Shift-Right Testing with OpenText

2

Key Takeaways
As companies continue with their
digital transformation initiatives,
performance engineers are expected
to release software faster and meet
enhanced performance requirements
while optimizing the customer
experience. As a result, there’s been
a recent push for them start testing
earlier in the software development
life cycle (SDLC). Often referred
to as shift-left testing, pre-
production testing determines
whether the code is returning
expected results, allowing the
program to work properly.

Shift-right testing is a critical,
complementary element to shift-
left testing. Shift-right testing
continuously tests software while
it is in the post-production
environment. Also known as “testing
in production,” this approach tests
applications in production. It detects
issues that might not have been
apparent during development, such
as application latency or availability.
Identifying these issues early
enables your organization to deliver
a seamless user experience that
customers expect.

Let’s take a deeper look at shift-right
testing and its benefits.

Combining Shift-Left and Shift-Right Testing for Continuous Quality

Implementing both shift-left and shift-right testing into
the SDLC process allows software development teams
to build quality applications from the beginning and
get continuous user feedback. The combination of the
two also delivers the following benefits:

1.	Reduce costs in development and testing.

2.	Detect and address bugs early, ensuring better code and product quality.

3.	Deploy time, manpower, and resources more efficiently.

Shift-left testing starts earlier in the
development process, focusing on problem
prevention rather than detection. Think
about unit testing, manual testing, and
integration testing. In contrast, shift-right
testing development teams test scenarios and
applications towards the end of the SDLC.
Tests in production examine functionality,
performance, failure tolerance, and user
experience (UX).

Shift-right testing identifies unexpected
scenarios not examined in the development
environment. By monitoring, observing, and
analyzing log data and “testing in production”
shift-right testing helps ensure the correct
behavior, performance, and availability of an
application.

3

The Case for Shift-Right Testing

Shift-right testing happens late in the
application lifecycle, pre- or even post-
deployment (that is, in production). By
testing in production, you’re ensuring that an
application will work under all circumstances
and environments. Planning to roll out a
new business application for your global
workforce? Want to ensure customers have
access to your ecommerce site during a
sale? Shift-right testing covers it all.

No matter how well you test up front,
elements of the application can
break in production. Knowing when
and why is crucial for guaranteeing
software quality. Shift-right testing
enables a continuous feedback loop
from users and analyzes use cases
that teams can’t anticipate such as
crashes, failures, and
slow performance.

Examples of shift-right testing include
A/B testing and canary testing. In
A/B testing, you redirect a portion
of your site’s users to a new site,
testing whether users stay on your

page longer and if they look and click
where you expect. Canary testing
redirects a small portion of your users
to an update of the existing website
to confirm everything works as it
should, especially integrations. If all
works well, you can then roll out the
update to all users.

Testing whether all APIs and
microservices are available and work
appropriately is paramount, especially
with many APIs and microservices
available. Shift-right testing helps
accomplish this best practice.

Delivering a quality user
experience is critical
whether the user is an
employee or customer.
By rolling out apps that
work upon release,
you build customer
confidence, which can
positively impact revenue.

4

Anticipate Potential Issues

Experienced developers know that
even when everything works well in
development after testing, something
could still be unavailable in production.
Picture this: a client wants a file upload option on their website
so that users can upload invoices and receipts for a manager’s
approval. Developers write the solution and test it using five
different browsers and versions. All work well, so they deploy
to production.

	 A month later, when the manager wants to approve all
files from the month before, in comes the bug report:
the manager only sees “[object Object]”.

It turns out some users are still using an old version
of Internet Explorer, which does not support the
JavaScript API used for uploading files. Instead of
saving the bytes to a file, the application has saved the
bytes of the text “[object Object].”

If they had tested in production and identified
defects earlier, the team could have collaborated with
performance testers, identified defects sooner, and
facilitated a better user experience.

Instead, the client has lost a month’s worth of files.

Consider TestOps
Since shift-right testing happens
in production, it’s ideal (and often
necessary) to involve the operations
team. Practicing “TestOps” is similar
to DevOps but includes shift-left and
right testing. It enables collaboration
between the development, test, and
operations teams to get the most
out of your testing needs. If you’re
already practicing DevOps, the step
to TestOps may not be significant
(and maybe you’re already doing it
without knowing it).

5

Shift-right testing sounds great, but
how do you start? First, you need a tool
specifically for testing in production.
The OpenText LoadRunner family is a
great way to get up and running fast.
With multiple LoadRunner solutions to
choose from, you’ll be able to implement
extensive, flexible test scenarios and
assess their impact on every
application component.

Adopt End-to-End Performance Engineering Solutions

LoadRunner’s family of
tools delivers end-to-end
performance engineering
for shift-left and shift-right
testing. Its intuitive and
easy-to-use interface makes
it simple and versatile for
performance testers of all
levels. The LoadRunner family
delivers both shift-left and
shift-right capabilities, with
tools engineering quality
and optimizing performance
throughout the DevOps
pipeline.

https://www.microfocus.com/en-us/portfolio/performance-engineering/overview

6

Real-world
performance engineering

LoadRunner solutions support
all types of web, mobile, and
packaged applications without heavy
customization. For performance
testing, you can apply workloads to any
application with flexible hardware usage.
In production, you have a single view of
end-user response time, infrastructure-
level, and network breakdown.

It’s easy for DevOps to integrate
continuous performance testing in the
CI/CD process. LoadRunner also makes
it easy for teams to collaborate, so
it’s an ideal tool for your DevOps and
TestOps environments.

Sharing and
collaboration

When testing, you need to have quick
access to enterprise engineering
capabilities and facilitate asset sharing
and collaboration. LoadRunner Solutions
allow global teams to share a common
infrastructure and can execute multiple
performance tests concurrently and
continuously with all relevant assets
being shared to increase collaboration.
With cross-project reporting and
individual project drill-downs, it’s easy
to see your entire application landscape.
Ultimately, you’ll be able to analyze
end-to-end performance, including
topology, infrastructure-level, and
advanced insights.

Performance engineers gain 24x7
access to all testing operations, including
uploading test scripts, scheduling load
tests, creating load test scenarios,
running multiple load tests, monitoring
test executions and analyzing results.
Everyone on the team can view load
testing data, progress, and run information
in real time leveraging this collaborative
infrastructure. Using LoadRunner
Enterprise, you can concurrently execute
and monitor multiple tests from any
location or schedule them to start
unattended. Relevant testing assets such
as test scripts, load test configurations,
test data and analyzed results are stored
in LoadRunner Enterprise for easy access,
sharing, and reuse.

Performance engineering for both
cloud and on-premises solutions

LoadRunner solutions also offer a
cloud-based solution for extreme scale
and flexibility. With LoadRunner Cloud,
you can easily plan, run, and scale
performance tests. Rapidly execute cloud
performance tests, easily scale more
than five million virtual users without
the management overhead, and run
multiple tests simultaneously with no test
concurrency limits.

7

Bridge Gaps with Functional Testing

Gaps in testing coverage happen
when people aren’t aligned. Shift-
right testing empowers subject-
matter experts and QA engineers to
close these gaps. Without scripting
knowledge, they can build and
execute tests.
The OpenText Business Process Testing solution within our UFT
family speeds up the journey to shift-right. Its simple design
makes tests easier to read and maintain. Now you can replace
programming with an intuitive, scriptless interface that builds
manual and automated test assets.

Using keyword-driven testing and data driving, business
analysts can mirror business processes by interacting with
the application under test. Once tests are captured, users can
execute them as manual tests. Or quality engineers can even
integrate them into automated tests.

Other benefits of using Business Process Testing allow you to:

	+ Generate test plan documentation automatically.
	+ Enable test versioning and baselining.
	+ Define pass or fail conditions via component criteria

for logical requirements coverage.
	+ Centralize test maintenance so that application changes

automatically spread through automated test assets.
	+ Support input parameters and data driving during execution.
	+ Provide a framework for building user acceptance

testing (UAT).

Adding Shift-Right Testing to Your App
Production
Shift-right testing complements your shift-left testing practices,
improving your overall testing strategy. Shift-right testing allows
you to find bugs and other issues in production so that you can fix
them before they become a real problem for customers.

The OpenText LoadRunner platform is the ideal way to shift your
testing to the right. OpenText LoadRunner solutions simulate load,
device versions, and other real-world conditions—without the cost
of purchasing physical testing devices.

Learn more about the LoadRunner family and request a free trial or a
demo of the solution that best fits your testing needs.

Learn More about LoadRunner Family

https://www.microfocus.com/en-us/portfolio/performance-engineering/overview

© 2023 Open Text

Accessibility Report

		Filename:

		adm-market-insight-improve-application-quality-in-production-shift-right-testing-with-micro-focus-ebook.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 1

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Failed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
	Button 28:
	Button 15:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:

	Button 16:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:

	Button 23:
	Page 8:

